
A Case for Network Musical Performance

John Lazzaro
CS Division
UC Berkeley

Berkeley, CA, 94720

lazzaro@cs.berkeley.edu

John Wawrzynek
CS Division
UC Berkeley

Berkeley, CA, 94720

johnw@cs.berkeley.edu

ABSTRACT
A Network Musical Performance (NMP) occurs when a group
of musicians, located at different physical locations, interact
over a network to perform as they would if located in the
same room. In this paper, we present a case for NMP as
a practical Internet application, and describe a method to
ameliorate the effect of late and lost packets on NMP. We
describe an NMP system that embodies this concept, that
combines several existing standards (MIDI, MPEG 4 Struc-
tured Audio, RTP/AVP, and SIP) with a new RTP packeti-
zation for MIDI performance. We analyze NMP experiments
performed on CalREN2 hosts on the UC Berkeley, Stanford,
and Caltech campuses.

1. INTRODUCTION
Imagine two pianists playing a 4-hands composition. But

rather than sitting side by side on a piano bench, one person
is located on the UC Berkeley campus, and the other person
is located on the Stanford campus. Each musician plays an
electronic piano that responds to both the local and the
remote player. Control information from the remote player
is sent across the Bay via the inter-campus CalREN2 link.

This scenario is an example of a Network Musical Per-
formance (NMP), which we define as a group of musicians,
located at different places, who interact over a network to
perform as they would if located in the same room.

In this paper, we present a case for NMP as a realizable,
practical multimedia application. We begin the paper by
discussing the network performance requirements of NMP,
focusing on latency requirements and the effects of late and
lost packets. We argue that by sending descriptions of the
physical gestures musicians use to manipulate their instru-
ments across the network, and generating audio from this
gestural stream at each host, we can reduce the impact of
network congestion on the performance.

We describe an NMP system that embodies this concept.
The system combines existing open standards (MPEG 4
Structured Audio [6] for sound synthesis, IETF RTP [10][9]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’01, June 25-26, 2001, Port Jefferson, New York, USA.
Copyright 2001 ACM 1-58113-370-7/01/0006 ...$5.00.

and SIP [5] for networking, and MIDI [8] for musical control)
with a new RTP packetization for MIDI performance that
supports the graceful recovery from lost and late packets.

We analyze data from NMP experiments conducted on
CalREN2 hosts located on the UC Berkeley, Stanford, and
Caltech campuses, and conclude with a discussion of future
work. Appendices describe the RTP packetization for MIDI
performance in a detailed way.

2. PERFORMANCE AND LATENCY
An NMP system unavoidably introduces time delays be-

tween the musicians, due to the network latency of the links
connecting the players and the local latency at each host.
The total latency must be kept reasonably short for the
NMP system to be usable.

Low latency is needed because a group of musicians play-
ing a composition can be viewed as a distributed sensory-
motor feedback loop: musicians hear the sounds created by
the other players, and adjust their playing to produce a co-
ordinated performance. Introducing delays into this system
makes the act of performance more difficult.

However, some latency is always present in conventional
musical performance – the acoustic latency due to the speed
of sound. An intuitive way to think about the musical signif-
icance of network latency in NMP is to consider the physical
separation that would yield the equivalent acoustic latency,
using the formula:

separation = 344 m/s × latency

For example, our measurements show that CalREN2 hosts
on the UC Berkeley and Stanford campuses in Northern Cal-
ifornia, separated by 40 miles, show a median symmetrical
latency (RTT/2) of 2.1 ms. This value would correspond
to the acoustic latency perceived by two musicians sitting
0.72 meters (2.4 feet) apart, considerably shorter than the
separation distance between players in most ensembles.

Similar measurements show a 14.2 ms symmetrical me-
dian latency between UC Berkeley and a Southern California
CalREN2 host (Caltech campus, 375 miles from Berkeley),
corresponding to a musician separation of 4.88 meters (16.0
feet). This distance is comparable to the separation between
musicians on a concert hall soundstage.

These intra-California comparisons show that for moder-
ate geographical distances over a quality network, the net-
work latency falls within the range of delays musicians nor-
mally accommodate. The remaining hurdle for practical
NMP is the local delays introduced at each host: computa-
tional delay, audio and control I/O delay, and perhaps local

acoustic delay. If these local delays are sufficiently low, a
usable NMP system should result.

Finally, we note that an NMP system whose total latency
fails this acoustic latency comparison test may still in fact
be a usable system. Certain musical instruments have a
long production latency (the delay from physical gesture to
sound generation), and yet musicians can compensate for
these delays during a performance. An extreme example of
this phenomena is the pipe organ, whose production latency
may be on the order of seconds.

We also note that musical ensembles that routinely play
in large performance spaces, such as marching bands and
symphony orchestras, include a conductor who keeps the
ensemble synchronized via visual cues. An NMP system
specialized for long latency situations might also be able to
incorporate synchronization cues.

3. NMP AUDIO STREAMING
One approach to NMP is to set up high-quality audio

streams between the remote sites. The basic idea is to cus-
tomize an Internet telephony architecture for low latency
operation, by making careful technology choices in the de-
sign of the local hosts.

As in standard Internet telephony, the hosts could use
the IETF Real Time Protocol (RTP) [10] to exchange au-
dio streams. An uncompressed sample-based packetization
would be chosen to eliminate algorithmic codec delay, and
the number of samples in each RTP packet (i.e. the packe-
tization interval) would be chosen to minimize buffer delay.

The host audio chain would also be customized for low la-
tency operation. The acoustic latency of the system would
be minimized by using headphones and close microphone
placement. For a PC-based system, modern soundcards
would be chosen to avoid bus performance problems. The
application software would directly read and write the DMA
buffers accessed by the soundcard to avoid buffering delays,
unless the system audio API supported small buffer sizes.

If these design principles are followed, and if the under-
lying network has low latency, over-provisioned bandwidth,
and (ideally) Quality of Service (QoS) mechanisms, an audio
streaming approach to NMP can be quite effective. For ex-
ample, a recent paper [2] describes successful Internet 2 per-
formances using uncompressed multichannel audio streams.

In our paper, we consider the case for NMP over net-
works where audio streaming is not practical, because of
bandwidth limitations, network congestion, or the lack of
QoS. In these networks, occasional packet delays and losses
are inevitable, as other users transiently consume resources.

Under these conditions, sending raw or compressed au-
dio signals at the network latency (i.e. small buffers on the
hosts) leaves few options for hiding transient network prob-
lems. Packet delay and loss would result in garbled sections
of sound, which would disrupt the performance.

4. GESTURAL NMP
Concealing packet loss is easier if the musical performance

is sent across the Internet at a higher level of abstraction,
that describes the physical gestures musicians use to manip-
ulate their instruments. If the proper representation is cho-
sen, artifacts produced by imperfect networks should sound
closer to mistakes produced by imperfect musicians (notes
that are skipped, played late, or which are held too long)

than to the dropouts, clicks and gurgles produced by data-
starved audio codecs.

In this model, each host should execute identical audio
signal processing algorithms to generate the sounds of the
instruments played in the session, under the control of local
and network gestural data. Gestural data sent across the
network should be tagged with timestamps and sequence
numbers, and should include contextual information about
recently sent gestures, so that late and lost packets can be
detected and concealed.

For example, imagine two pianists, in different locations,
playing a 4-hands composition on electronic keyboards that
generate control information (piano key depression and pi-
ano key release events). At both sites, audio is generated
in response to local and remote key events, using computer
music synthesis techniques to generate the piano sounds.

In this scenario, delayed or lost control information can
often be gracefully handled in an event-specific way. For ex-
ample, lost and late key depressions are best skipped, so that
a note does not sound at an inopportune time. Conversely,
lost and late key releases are always executed, so that a de-
pressed key does not sound indefinitely. Other gestures such
as sustain pedal movements and volume changes have differ-
ent recovery semantics that reflect their sonic effect. With
careful design, the qualitative effect of an occasional lost or
late packet can be made quite subtle.

We have implemented an experimental system for gestural
NMP, that is based on open standards from MPEG and the
IETF. The system includes an NMP client, which is used by
each musician in a performance, a conference server, which
coordinates communications between clients, and a mirror

server, used for session debugging.

5. CLIENT AND SERVER OVERVIEW
The NMP client is a real-time sound synthesis engine, that

is driven both by local control information (from the musi-
cian playing at the client site) and networked control infor-
mation (from musicians at other sites). The sound synthesis
engine is programmable, so that musicians can exchange in-
strument models at the start of a session. The NMP client
also transmits the local musician’s gestural information to
the other clients, and interacts with the conference server.

The NMP client uses Structured Audio (SA) for music
synthesis, which is part of the MPEG-4 audio standard [6].
This standard defines a programming language, SAOL, that
is specialized for sound. SAOL semantics are normative:
a compliant decoder generates audio that sounds identical
to the audio produced by other compliant decoders. SAOL
supports two types of control input: the popular MIDI for-
mat, and the more powerful SASL language.

The NMP client uses the sfront SA engine [7]. Sfront
executes a SA program by converting it into a C program
that generates audio when executed. The C programs sfront
generates support low-latency real-time interaction, via au-
dio input from a microphone and control input from music
instrument controllers that generate MIDI.

We have extended sfront to act as an NMP client by
adding the ability to send and receive UDP Internet Pro-
tocol packets. The NMP client uses the IETF Real Time
Protocol (RTP) [10] under the AVP profile [9] to exchange
MIDI control information with the other endpoints. The
NMP client uses a new RTP packetization for MIDI that
is specialized for performance applications. The client fully

Table 1: MPEG 4 Structured Audio semantics for MIDI

Name Bit Pattern Action taken on channel cccc

NoteOff 1000cccc 0nnnnnnn 00000000 End note number nnnnnnn, velocity ignored.
NoteOn 1001cccc 0nnnnnnn 0vvvvvvv Start note number nnnnnnn with velocity vvvvvvv, 0000000 → NoteOff.
PTouch 1010cccc 0nnnnnnn 0aaaaaaa Set aftertouch value for note number nnnnnnn to aaaaaaa.
CControl 1011cccc 0xxxxxxx 0yyyyyyy Set controller number xxxxxxx to value yyyyyyy.
PChange 1100cccc 0ppppppp Set channel cccc to play program timbre ppppppp.
CTouch 1101cccc 0aaaaaaa Set aftertouch value for channel cccc to aaaaaaa.
PWheel 1110cccc 0xxxxxxx 0yyyyyyy Set pitch bend 14-bit value to yyyyyyyxxxxxxx.
System 1111xxxx ... All System commands ignored.

implements the Real Time Control Protocol (RTCP) back-
channel of RTP.

Musicians using NMP clients do not need to know the In-
ternet addresses of the other musicians in a session. Instead,
the musicians choose a session name for the performance,
and the NMP clients interact with a conference server to
handle connection details. Our conference server uses the
Session Initiation Protocol (SIP) [5].

Our system also includes an auxiliary server for system
testing, called a mirror server. Participants may temporarily
launch a mirror server at the start of the session, to help
debug the link and measure latencies.

Mirror servers implement the RTP and SIP functionality
of an NMP client, but do not include an SA engine and are
not meant to be locally controlled by a musician. When
a mirror server receives an RTP packet, it alters the in-
formation in the packet (for example, by transposing notes
by a fixed interval) and returns the modified packet to the
sender. In a typical use, a player may launch a mirror on a
remote machine, play a few notes to “hear the echo,” and
then disable it.

The next two sections of the paper describe the RTP pack-
etization for MIDI performance in more detail. The packe-
tization is best understood as an RTP encapsulation of the
MIDI wire protocol for transport over unreliable networks,
for applications where the latency cost of retransmitting lost
packets is unacceptable. Section 6 summarizes the MIDI
wire protocol as used by Structured Audio, while Section 7
describes how the RTP packetization encodes the MIDI wire
protocol.

We note that the basic idea of sending the MIDI wire
protocol over packet networks is not new. For example, the
Open Sound Control standard [12] is a popular protocol for
music synthesizer control that has been used for MIDI-over-
IP. Our work differs from previous efforts in its compatibility
with RTP, and its focus on feed-forward approaches to lost
packet recovery in lieu of packet retransmission.

6. THE MIDI WIRE PROTOCOL
The MIDI standard [8] has its roots in data communica-

tion: the protocol was designed to send real-time musical
control data over coaxial cables, so that a musician could
trigger several music synthesizers from one piano keyboard.

MIDI is sent on a wire as a series of variable-sized com-
mands, using a bit encoding that makes command segmen-
tation implicit. The most popular MIDI commands are 1,
2 or 3 bytes long, and the fixed link bandwidth of 320 mi-
crosecond/byte results in a command latency of a fraction
of a millisecond. MIDI commands do not have timestamps,
but are meant to be executed upon receipt.

Table 1 summaries the MIDI commands that Structured
Audio supports. These commands specify a specific gestural
action to occur on one of 16 channels (specified with the cccc
bits in the first byte of each command).

For example, the NoteOn command specifies the start or
end of a note with a particular pitch (coded by a 7-bit note
number nnnnnnn) and strike velocity (coded by a 7-bit value
vvvvvvvv).

Other commands code the end of a note (NoteOff), a
change in value of a pressure sensor under each key (PTouch)
or under the entire keyboard (CTouch), the change in value
of continuous pitch bend (PWheel), or state changes in an-
cillary devices such as pedals and sliders (CChange).

MIDI uses the channel concept to let musicians play sev-
eral different timbres at once. For example, a piano key-
board controller may be configured to send notes below Mid-
dle C on one channel, and note above Middle C on a second
channel. Channels are bound to timbres using the PChange

command; Structured Audio uses this command to bind a
SAOL instrument model to a MIDI channel.

Note that the first byte of MIDI commands (the command
byte) begins with a binary 1, but all subsequent bytes (the
data bytes) begin with a binary 0. This coding scheme sup-
ports the running status data compression technique: a se-
quence of MIDI commands sharing the same channel and
command type may be sent as a single MIDI command
byte followed by the data bytes for each command in the
sequence. Running status is particularly efficient when cod-
ing long strings of NoteOn and NoteOff commands, because
NoteOff commands may alternatively be coded as NoteOn

commands with zero velocity.
The exact semantics of a protocol whose commands de-

scribe artistic expression are inevitably slippery. However,
MIDI is over 20 years old, and many product generations of
musical instruments have collectively defined interoperabil-
ity in practice. Our RTP packetization uses these semantics
to guide the recovery procedures for lost and late packets.

Experienced MIDI users may notice that Table 1 is a re-
stricted version of MIDI in several minor respects: the No-

teOff velocity and all MIDI System commands are ignored.
These restrictions are normative elements of the Structured
Audio standard, and our RTP packetization uses this fact
to optimize the recovery procedure for lost packets.

Finally, we note one unfortunate aspect of MIDI that con-
strained the design space for our RTP packetization. The
coding technique used for sending notes – matched pairs of
NoteOn and NoteOff commands – is very vulnerable to lost
commands. A single lost NoteOff command results in a note
sounding arbitrarily long.

7. RTP PACKETIZATION
Figure 1 shows the structure of an RTP packet in the

MIDI packetization. A packet begins with the standard RTP
header, which is followed by a MIDI command section and
a recovery journal section. In this section, we describe how
to send and receive these packets, and discuss aspects of the
packetization design.

Figure 1: Packet format

RTP header:

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|V=2|P|X| CC |M| PT | Sequence Number |

+-+
| Timestamp |

+-+
| SSRC |

+-+

Payload:

+-+

|R|R| LEN | MIDI Command Payload ... |
+-+
| Recovery Journal ... |

+-+

7.1 Sending packets
Structured Audio programs define a control rate, which

typically ranges from 500Hz to 4000Hz for real-time work.
Our NMP client checks the MIDI In port of the soundcard
at the control rate, to see if new MIDI bytes have arrived
from an attached musical instrument controller.

If the NMP client determines that a complete MIDI com-
mand has arrived, it schedules the command for immediate
execution on the local Structured Audio engine, so that the
local player hears a low-latency response to local actions.
The NMP client also prepares a new RTP packet, and sends
it to the other players at remote locations. All players re-
ceive the same packet; in this sense, the system emulates a
multicast transport by using several unicast flows.

The sequence number of the RTP packet is one greater
than the last packet sent, modulo 32. The timestamp of
the RTP packet reflects the local Structured Audio time, in
the units of the audio sampling rate: if the sampling rate
is 44,100 Hz, two packets sent exactly 2 seconds apart have
timestamps that differ by 88,200.

The MIDI command section of the packet codes the new
data generated by the local player. The MIDI command
bytes are placed in the payload field of this section, and
the LEN field is set to code the number of payload bytes.
The 6-bit LEN field supports sending many MIDI commands
in a single packet; note that the first MIDI command in a
payload may not use running status compression, but sub-
sequent commands may use this technique. The R bits are
reserved for future use, as are all bits named R in the format.

The recovery journal section of the packet holds informa-
tion a receiver uses to recover from earlier lost packets. The
journal enables the recovery from the loss of all RTP pack-
ets sent since an earlier RTP packet, called the checkpoint

packet. Typically, a sender creates the recovery journal for
packet Pi by slightly modifying the recovery journal sent in
packet Pi−1 to reflect the MIDI command section of packet

Pi−1. Appendix A.1 describes the recovery journal format
in detail.

The sender also tracks the last RTP packet received at
each remote location, by monitoring the data returned in
RTCP receiver reports. The sender uses this knowledge
when preparing the recovery journal of a new RTP packet:
it trims journal data for recovering from the loss of packet
Pi once it knows that all remote locations have received a
packet Pj >= i. By trimming the data, the sender updates
the identity of the checkpoint packet. Note that this feed-
back scheme is compatible with multicast transport.

7.2 Receiving packets
When a new RTP packet arrives from a remote client,

the NMP client first determines if the packet has arrived
significantly late, and if so sets the binary flag late to 1. As
described in Appendix B, the NMP client judges the lateness
of an incoming packet by comparing its RTP timestamp
against a model of the current time at the remote client.

The NMP client then examines the sequence number of
the RTP packet, and determines if previous packets have
been lost, or if this packet has been delivered out of sequence.

If neither condition is detected, the client processes the
the MIDI command section of the packet, scheduling each
MIDI command in the payload for immediate execution on
the local Structured Audio engine. However, if the late flag
is set, some MIDI commands may be skipped, because their
execution would disturb the musical performance.

The current NMP client uses a simple decision rule for
skipping late commands: all NoteOn commands with non-
zero velocity are skipped, all other commands are executed.
This rule acts to mute notes that would otherwise play many
beats too late, but promptly ends notes which are sounding
beyond their intended length.

If packet loss has been detected, the NMP client parses
the recovery journal section of the packet. If necessary, the
NMP client schedules one or more MIDI commands for im-
mediate execution on the local Structured Audio engine, to
implement recovery actions. The recovery procedure takes
into account the state of the late flag; Appendix A.3 de-
scribes the recovery procedure in more detail. Once recovery
processing is complete, the NMP client executes the MIDI
command section of the RTP packet, as described above.

If out of sequence delivery is detected, the RTP packet is
discarded, without processing its MIDI command payload;
an earlier RTP packet delivery resulted in the parsing of a
recovery journal and the execution of recovery measures.

7.3 Discussion
The recovery journal mechanism shares common traits

with forward error correction (FEC) and reliable multicast
transport (RMT) approaches to resilience [1] [4]. Like FEC,
redundant information is included in the forward transmis-
sion path, in lieu of packet retransmission.

Like most RMT schemes, an aspect of behavior is guar-
anteed regardless of the number of packets lost: the first
packet received after the lost packet(s) results in the recov-
ery from all artifacts attributable to the loss, and restores
the system to a normal state.

For example, after several consecutive lost packets, several
notes might be “stuck on” (due to lost NoteOff commands),
the timbre for a MIDI channel might be incorrect (due to
a lost PChange command), and the volume of a channel

might be incorrect (due to a lost CTouch) command. The
first packet received after the loss is guaranteed to fix these
issues. This guarantee can be made because senders do not
remove information from the recovery journal until RTCP
receiver reports from all remote locations indicate that it is
safe to do so.

As worded above, this guarantee has a loophole: if a long
period of time occurs without a musician generating a MIDI
event, no new RTP packets are sent to the remote sites. If
the last packet sent was lost, the artifacts due to the loss
could persist arbitrarily long.

To handle this situation, our NMP client detects periods
of musician inactivity, and sends guard packets to the remote
clients. The MIDI command section of these guard packets
has an empty payload (the LEN field is set to zero).

In the current implementation, the NMP client sends the
first guard packet after 100 ms. of inactivity, and a second
guard packet 100 ms. later. Subsequent guard packets are
sent with an exponential backoff, with a limiting period of 1
second. The client ceases sending guard packets once MIDI
activity resumes, or once RTCP receiver reports indicate
that all remote clients are up to date.

In addition, the NMP client optionally sends a single guard
packet shortly after sending a packet that contains a NoteOn

command, if no packet has been sent in the interim. This
technique provides good protection against the transient ar-
tifact of skipped notes due to lost NoteOn commands, at a
moderate bandwidth cost.

Another aspect of the recovery journal guarantee concerns
what it does not guarantee: no claim is made that a receiver
can reconstruct all lost MIDI command packet payloads by
examining the recovery journal.

As Appendix A details, the recovery journal records the
most recent MIDI event of a particular type since the check-
point packet, not all MIDI events of this type. For example,
20 PWheel commands may have been sent on a channel since
the last checkpoint packet (60 bytes of total MIDI command
payload), but the recovery journal only codes the data in the
20th PWheel command (using 2 bytes). The relative weak-
ness of this guarantee makes the packetization adequate for
MIDI performance transport, but inappropriate for use in
archival applications.

However, the weakness of the guarantee is also what makes
the packetization practical: as analyzed in Appendix A.4
and experimentally shown in Section 8.3, the bandwidth
overhead of the recovery journal mechanism is reasonable.
The weak guarantee, coupled with the use of RTCP feedback
to trim the journal of irrelevant events, prevent the recovery
journal from consuming an arbitrary amount of bandwidth
as a performance proceeds.

Finally, we compare the dynamics of the packetization to
standard RTP audio packetizations, to highlight the differ-
ences in the two approaches. Apart from periods of silence,
most RTP audio packetizations send packets at regular in-
tervals, and the RTP timestamp reflects this pace. If no
FEC is used, the data in a single packet completely codes
the audio for a fixed time interval of known duration.

In contrast, the MIDI packetization sends out packets ir-
regularly, reflecting physical motions of a human. The pack-
ets code MIDI commands which receivers execute immedi-
ately, but whose sonic effects may last an arbitrary amount
of time. Many packets may contribute to sound generation
during a period of time, often in an additive way (for ex-

ample, several NoteOn commands, sent in different packets,
that create a sustained chord). RTP timestamps directly
participate in the fine-time structure of audio generation:
the algorithm for discarding late NoteOn commands relies
on the RTP and RTCP timestamp values (Appendix B).

These differences can be reduced to a single observation:
the MIDI packetization maps an asynchronous information
source (a musician) to an asynchronous channel (packet net-
works) without an intermediate synchronous representation.
The preservation of distinct events during transport makes
the graceful recovery from lost and late packets possible.

8. NMP EXPERIMENTS

8.1 Experimental Setup
This section describes a series of network experiments we

conducted using the NMP system described in Section 5, in
May 2001. All experiments use the recovery journal and late
packet detection technologies described in Section 7. The
system setup consists of an NMP client at UC Berkeley, two
mirror servers, located at Stanford and Caltech, and a SIP
conference server for session management, located at UC
Berkeley. In most of the experiments, a musician controls
the NMP client, using a MIDI piano keyboard controller; one
of the authors (JL) acted as the musician in the experiments
described below.

This experimental approach lets us evaluate the effect of
latency and packet loss on NMP in a controlled situation,
which would be more difficult to do if the mirrors were re-
placed with additional musicians running NMP clients.

In response to keyboard actions, the musician hears an
audio response from three sources: an unfiltered command
stream direct from the keyboard, and the same command
stream processed by the mirrors at Caltech and Stanford.
Any stream may be optionally muted. The mirrored streams
differ from the direct stream in two respects: added delay
due to the round-trip network latency and mirror processing
time, and added network congestion artifacts (late and lost
packets).

Table 2: Traceroute to Stanford mirror

1 e0-5.inr-180-soda.Berkeley.EDU 0.351 ms

2 gig10-cnr1.EECS.Berkeley.EDU 0.460 ms

3 gigE5-0-0.inr-210-cory.Berkeley.EDU 0.733 ms

4 vlan229.inr-201-eva.Berkeley.EDU 1.202 ms

5 gigE2-0.inr-000-eva.Berkeley.EDU 0.727 ms

6 pos3-0.c2-berk-gsr.Berkeley.EDU 0.908 ms

7 SUNV--BERK.POS.calren2.net 2.073 ms

8 STAN--SUNV.POS.calren2.net 2.446 ms

9 i2-gateway.Stanford.EDU 2.512 ms

10 Core4-gateway.Stanford.EDU 3.112 ms

11 rtf-gateway.Stanford.EDU 3.295 ms

12 stanford mirror 3.061 ms

Tables 2 and 3 shows a traced route from the NMP client
to the Stanford and Caltech mirror machines during the
experiments. Traced routes back to the NMP client tra-
versed the same paths in the inverse direction; route sta-
bility was not formally monitored during the experiments,
but in general these routes tend to be stable. The long-
distance portion of the routes were point-to-point for the
Berkeley-Stanford link (7-8 in Table 2) but more circuitous
for Berkeley-Caltech (7-11 in Table 3); the intra-campus por-

Table 3: Traceroute to Caltech mirror

1 e0-5.inr-180-soda.Berkeley.EDU 0.348 ms

2 gig10-cnr1.EECS.Berkeley.EDU 0.470 ms

3 gigE5-0-0.inr-210-cory.Berkeley.EDU 0.737 ms

4 vlan229.inr-202-doecev.Berkeley.EDU 1.121 ms

5 gigE3-0.inr-000-eva.Berkeley.EDU 0.776 ms

6 pos3-0.c2-berk-gsr.Berkeley.EDU 0.789 ms

7 SUNV--BERK.POS.calren2.net 2.157 ms

8 C2-QANH-GSR-QSV-GSR.ATM.calren2.net 22.58 ms

9 UCI--QANH.POS.calren2.net 23.45 ms

10 UCR--UCI.POS.calren2.net 24.39 ms

11 CIT--UCR.POS.calren2.net 26.00 ms

12 BoothBorder-Calren.caltech.edu 26.39 ms

13 Moore-RSM2.ilan.caltech.edu 26.69 ms

14 caltech mirror 26.74 ms

tion of the routes were simplest at Caltech (12-14 in Table
3) and most complex at Berkeley (1-6 in Table 2).

In these experiments, the NMP client runs on a 450MHz
Intel PIII PC with 128MB of RAM and SCSI disk, run-
ning Linux 2.2.17. A Creative Labs PCI 128 card, driven
by the es1370 OSS-free device driver, handles audio and
MIDI I/O processing. The 49-note MIDI piano keyboard
controller is capable of generating the NoteOff, NoteOn,
PChange, PWheel, and CChange commands. The mirror
and conference servers ran on a variety of platforms (SunOS
5.7, HPUX 9.0, Linux 2.2.17), under a range of system loads.

In most of these experiments, the NMP client runs the
linbuzz SAOL instrument, an example file in the sfront
distribution [11]. The amplitude envelope of the instrument
does not decay with time: once launched with a NoteOn

command, the voice sounds at full volume until a NoteOff

command executes. The voice uses PWheel commands for
continuous pitch bending, and uses the volume and modu-
lation wheel CChange controllers to dynamically modulate
the amplitude and spectral shape of the sound.

8.2 Qualitative Experiences
To qualitatively test the system, we configure it to use a

single mirror, and we mute the local feedback to the musi-
cian. The musician relies on the network stream for audible
feedback: network congestion and delay directly disturb the
sensory-motor feedback loop. This setup creates a musical
instrument whose latency and reliability depends on network
behavior.

In our experience, this configuration results in a playable
musical instrument, for both the Stanford and the Caltech
mirrors, as long as the network links are not experiencing
prolonged episodes of severe congestion. For the Stanford
mirror, the nominal system latency is difficult to distinguish
from the latency of local feedback. For the Caltech mirror,
significant nominal latency is readily apparent; however, a
musician can quickly adjust to the delay and play fluidly.
Network congestion affects operation in several ways:

1. Depressed keys sometimes do not sound (a consequence
of lost and late NoteOn commands).

2. The onsets time of NoteOn commands that do sound
have perceptible jitter. Note that the maxlate param-
eter in Equation B.1 in Appendix B controls the trade
off between onset jitter and note skipping.

3. Released keys sometimes keep sounding for a short
time period before falling to silence (a consequence of
lost and late NoteOff commands).

The severity of these artifacts varies widely from session to
session; the perceived quality of a particular performance
session hinges on the level and distribution of these impair-
ments. We quantitatively explore this issue in Section 8.4.

Note that without the recovery systems described in Sec-
tion 7, the artifacts from lost and late NoteOn and NoteOff

command would be severe: mild congestion could result in
clusters of notes sounding at inopportune times, and lost
packets could result in stuck notes.

8.3 Payload Bandwidth
The payload bandwidth of the MIDI RTP packetization

depends on two factors: the number of packets sent per sec-
ond and the payload size of each packet. These factors vary
dynamically; the actions of the sending musician influence
the payload bandwidth, as does the behavior of the network
and the receiving clients (because RTCP receiver reports
influence recovery journal trimming).

We designed an experiment to measure the upper range
of the payload bandwidth of the MIDI packetization, when
driven by a piano keyboard controller. We used the setup
described in Section 8.1, activating both the Stanford and
Caltech mirrors: multiple receivers reduce the effectiveness
of receiver report trimming, since data must remain in the
recovery journal until all receivers acquiesce to its removal.
We also enabled the NMP client transmission of optional
guard packets to protect NoteOn commands (Section 7.3).

Using this setup, we recorded the sending time, payload
size, and MIDI payload command type of all RTP pack-
ets, for a 5.6 minute keyboard improvisation. The musi-
cal playing style alternated between fast rhythmic bursts of
two-handed chords and single-handed melody lines enhanced
with pitch and modulation wheel motion.

We measured the distribution of MIDI commands sent
during the performance. The majority of packets (67%) code
NoteOn and NoteOff commands. Controller wheels usage
results in 12% of the packets carrying CChange and PWheel

commands. About 21% of the packets have empty payloads;
the bulk of these guard packets protect NoteOn packets.

We analyzed the data trace for the performance, and cal-
culated three measures – the number of packets per second,
the number of bits per packet, and the number of bits per
second – averaged over 1 second bins during the 5.6 minute
performance. Histograms of these traces show distributions
that are roughly unimodal in shape. Table 4 summarizes
the traces using several common statistics.

Table 4: Payload bandwidth statistics

Measure packets/s bits/packet bits/s
Median 29 162.8 4712
Mean 30.1 161.8 4979
Std D 11.7 16.7 2188
Min 0 32 0
Max 70 199.2 12840

The median bandwidth of 4.7 kb/s is consistent with the
analysis presented in Appendix A.4, and is in the range of
modern Internet telephony voice codecs. The median pay-
load size (20 bytes) and median packetization interval (34
ms.) are also in the range of voice codecs during a talkspurt.

The bandwidth variance is significant, and is a conse-
quence of the variance in the packet sending rate and the
payload size. The packet sending rate is a direct function of
the number and type of MIDI commands generated by the
musician.

The payload size has a more subtle connection to musical
activity, as mediated by the data representation of the recov-
ery journal (Appendix A.1). For example, a single PWheel

command expands the size of every packet sent thereafter
by 3 bytes, until RTCP receiver reports from all receivers
indicate the safety of removing Chapter W from the journal.

8.4 Late and Lost Packets
Section 8.2 describes the qualitative effect of lost and

late NoteOn and NoteOff commands on a performance. To
quantify this issue, we designed an experiment to estimate
performance quality at regular intervals during a weekday
(Wednesday May 9, 2001).

At hourly intervals between 10:30 and 19:30 PST, the mu-
sician performed for 5 minutes; we recorded the tm−tp value
for each received packet (see Appendix B), and information
about each lost packet detected. We activated both the
Stanford and Caltech mirrors; the musician heard only local
feedback, so that artifacts would not alter the playing style.
The musician played continuously during the 5 minute in-
terval, alternating between melodies and chordal patterns
with no pauses. Total packets sent were roughly constant
from hour to hour (mean 7498, standard deviation 261).

The mirrors were configured to preserve the RTP times-
tamps of incoming packets, so that delays introduced in the
link from the client to the mirror would be seen by the
late packet detection algorithm (Appendix B). We chose this
method so that lost and late packets would have the same
network link dependencies.

Late packet statistics for each performance are shown in
the first column of Tables 5 (Stanford) and Table 6 (Cal-
tech). We use Equation B.1 in Appendix B to determine if
a packet is late. Late packet rates vary from < 1% to > 10%
for both links, and vary systematically during the day. Lost
packets were less common. All sessions had a lost packet
rate under 1.0%; 50% of Caltech sessions and 80% of Stan-
ford sessions had a lost packet rate under 0.1%. Even under
low loss rates, the recovery journal system is essential: in its
absence, a single lost NoteOff destroys the performance.

To estimate the impact of network congestion on per-
formance quality, we break each performance into 60 non-
overlapping 5-second intervals, and rank the quality of each
interval as Perfect, Impaired, or Damaged. Tables 5 and 6
show the distribution of rankings for each session on each
mirror; bold-face rows show the best and worst session of
the day, based on the number of damaged intervals.

To rank an interval, we determine the number of late No-

teOn and NoteOff commands it contains; the interval asso-
ciated with a command is determined by the estimated time
the command was sent. If an interval contains no late No-

teOn or NoteOff commands, it is ranked perfect. Impaired
intervals have less than 15% late NoteOn and 15% late No-

teOff commands; all remaining intervals are damaged. This
simple estimate does not consider lost packets.

The rankings in Table 5 and 6 show bimodal behavior:
for most of the day, the performance quality is good or
very good, but for a few time periods (11:30 and 19:30)
damaged intervals are in the 25-50% range, and the sys-

Table 5: Performance fidelity: Stanford

Time % Late % Perfect % Impaired % Damaged
10:30 0.5 91.7 6.67 1.67
11:30 10.1 58.3 13.3 28.3
12:30 0.0 100 0.0 0.0
13:30 0.4 88.3 11.7 0.0
14:30 0.0 100 0.0 0.0
15:30 0.3 93.3 5 1.67
16:30 2.5 85 6.67 8.33
17:30 7.1 83.3 5 11.7
18:30 1.5 90 1.67 8.33
19:30 15.5 51.7 1.67 46.7

Table 6: Performance fidelity: Caltech

Time % Late % Perfect % Impaired % Damaged
10:30 3.9 73.3 21.7 5
11:30 16.1 36.7 23.3 40
12:30 0.5 85 15 0.0
13:30 2.4 65 30 5
14:30 1.3 78.3 16.7 1.67
15:30 1.0 81.7 16.7 1.67
16:30 2.5 80 11.7 8.33
17:30 8.3 71.7 15 13.3
18:30 1.7 80 15 5
19:30 17.0 43.3 11.7 45

tem as designed is unusable. An examination of trace data
for the outlier sessions shows congestion delays of several
hundred milliseconds throughout the damaged intervals, a
hostile network environment for any interactive application.

8.5 Latency Measurements
As we described in Section 2, the total latency of an NMP

system should be kept reasonably short. We now describe an
experiment that estimates the total latency of our system.

In this experiment, a musician does not send MIDI com-
mands to the NMP client. Instead, we modify the NMP
client to send MIDI commands to the MIDI Out jack of the
soundcard, and use a loopback cable to connect the MIDI
Out and MIDI In soundcard jacks.

In this way, a client can generate a MIDI NoteOn com-
mand on the loopback cable at a known time, and then
detect the resulting sound as it plays through the speaker.
The client senses speaker output by monitoring the audio in-
put jack of the soundcard, which connects to a microphone
placed in front of the speaker. The elapsed time from the
NoteOn issuance to the sound detection is a conservative
estimate of total latency. We describe the estimate as con-
servative because it includes the time for audio input, which
is not part of the total latency of the NMP client.

To make a latency measurement, we run two SAOL in-
struments on the NMP client: one instrument generates a 5
kHz 100 ms. tone in response to a NoteOn command, while
the second instrument monitors the microphone input from
the soundcard, and detects the onset of the 5 kHz tone.

Table 7 shows the measured total latency for local feed-
back, Stanford mirror, and Caltech mirror cases. For each
test, we measured the latency 60 times over a minute; the
table shows the mean and standard deviation of the 60 la-
tency values. The mirror rows also include the round trip
times, as measured from RTCP reports received during the
test. Care was taken to avoid periods of network congestion:
our goal was to measure quiescent network conditions.

Table 7: Total latency, RTCP round-trip times

Total Latency RTT
Mean S. D. Mean S. D.

Local 6.09 0.22 − − ms
Stanford 9.79 0.32 3.62 0.16 ms
Caltech 33.5 0.37 27.4 0.43 ms

The data in Table 7 are self-consistent: for each mirror,
subtracting the round-trip time from the total latency yields
a value close to the local feedback total latency. Table 7 also
explains why it was difficult for the musician in Section 8.2
to distinguish the latency of the Stanford mirror from the
local feedback latency: note these values are quite close.

To understand the limitations of this measurement, we
briefly discuss NMP client implementation details. We use
the POSIX real-time scheduling support in Linux 2.2.17 to
place the NMP client at the highest priority; this ensures
the client promptly runs whenever it is not blocking.

The client blocks only on audio I/O. The audio driver
uses 4 output buffers, each holding 725 µs of audio: the
driver blocks on the fifth consecutive buffer write(), and
remains blocked until the first buffer has been fully turned
into sound. Audio input blocks on read() in a similar way.
Four write()s of silent buffers start a session.

Most of the time, the NMP client is blocked awaiting au-
dio output completion. When a buffer is ready, the client
quickly fills up a new buffer (and perhaps handles non-
blocking MIDI, network, or onset detect chores) and then
blocks upon the audio output write(). Given this scenario,
we can know the time the client requests a MIDI Out write
to ± 0.36 ms (± one-half the buffer length), assuming jitter-
free OS scheduling. Note that all timing is cued from audio
I/O buffer counts; gettimeofday() is not used.

We note that much of the local feedback latency shown
in Table 7 can be attributed to known factors: 2.9 ms. of
audio output buffering, 0.64 ms. of running-status MIDI
wire time, and at least 0.725 ms of audio input buffering
leaves only 1.825 ms. of delay attributable to other factors.

9. FUTURE WORK
The experiments described in Section 8 have many limi-

tations: the artificial nature of the mirror setup, the small
number of network links tested, and the use of a single mu-
sician for qualitative testing. We are currently preparing to
conduct multi-player performance experiments on a wider
range of networks. We also plan to work on several related
topics that impact NMP, as described below.

9.1 Reducing Last-Mile Latency
The experiments described in this paper use hosts that

connect to enterprise routers via low-latency Ethernet net-
work interface cards. Unfortunately, most xDSL, cable mo-
dem, and POTS modems trade shorter latency for higher
bandwidth, without providing hooks for applications to al-
ter the tradeoff. In many cases, the delay of these “last mile”
technologies dominates the end-to-end latency between two
hosts, and results in a total latency too high for usable NMP.

A potential solution to this problem lies in enhancing
these last-mile technologies to support dynamic reconfigura-
tion of the latency-bandwidth tradeoff. Recent work in DSL
telephony standardization [3] is promising in this regard.

9.2 Acoustic Control Input
Certain musical instruments, such as the human voice and

the guitar, are not easily replaced by a MIDI controller.
These instruments are best incorporated into the framework
described in this paper by capturing real-time input from the
instrument using a microphone, and coding it in a gestural
representation that is customized for the instrument.

In some cases, MIDI might be a suitable control language
for these special-purpose codecs. However, the SASL con-
trol language (a part of MPEG 4 Structured Audio) has ad-
vanced features that simplify the implementation of codecs
in SAOL. An RTP packetization for SASL is needed, that
handles network congestion in a graceful manner.

10. CONCLUSIONS
In this paper, we presented a standards-based approach to

NMP. We described a way to gracefully recover from lost and
late packets during a performance, and showed experiments
that confirm the effectiveness of the recovery system.

11. ACKNOWLEDGMENTS
Thanks to Carver Mead, Tobi Delbruck, Michael Godfrey

for access to machines at Caltech and Stanford, and to the
anonymous reviewers for many helpful suggestions. This
work supported by DARPA contract DABT63-C-0048.

12. REFERENCES
[1] J. C. Bolot and A. V. Garcia. Control mechanisms for

packet audio in the Internet. In Proceedings of the

Conference on Computer Communications, 1996.

[2] C. Chafe, S. Wilson, R. Leistikow, D. Chisholm, and
G. Scavone. A simplified approach to high quality
music and sound over IP. In COST-G6 Conference on

Digital Audio Effects, pages 159–164, December 2000.

[3] TR-039: Requirements for voice over DSL. Technical
report, DSL Forum, 2001. Annex A addresses latency.

[4] M. Handley, S. Floyd, B. Whetten, R. Kermode,
L. Vicisano, and M. Luby. RFC 2887: The reliable
multicast design space for bulk data transfer, 2000.

[5] M. Handley, H. Schulzrinne, E. Schooler, and
J. Rosenberg. RFC 2543: SIP: Session initiation
protocol, 1999.

[6] ISO 14496 (MPEG-4), Part 3 (Audio), Subpart 5
(Structured Audio), 1999.

[7] J. Lazzaro and J. Wawrzynek. Compiling MPEG 4
structured audio into C. In Proceedings of the 2nd

IEEE MPEG-4 Workshop and Exhibition, June 2001.

[8] MIDI Manufacturers Association. The complete MIDI
1.0 detailed specification, 1996.

[9] H. Schulzrinne. RFC 1890: RTP profile for audio and
video conferences with minimal control, 1996.

[10] H. Schulzrinne, S. Casner, R. Frederick, and
V. Jacobson. RFC 1889: RTP: A transport protocol
for real-time applications, 1996.

[11] Sfront source code release,
http://www.cs.berkeley.edu/∼lazzaro/sa/.

[12] M. Wright and A. Freed. Open Sound Control: A new
protocol for communicating with sound synthesizers.
In Proceedings of the International Computer Music

Conference, 1997.

APPENDIX

A. THE RECOVERY JOURNAL

A.1 Recovery Journal Format
A recovery journal has a 3-level structure (Figure 2). At

the top level, the journal consists of a 3-byte header followed
by a list of channel journals, that hold recovery information
for a single MIDI channel.

Figure 2: Recovery Journal Format

Top-Level Structure:

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|S|A|K|R|TOTCHAN| Checkpoint Packet Seqnum | Channels ... |

+-+

Channel Journal:

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|S| CHAN |R| LENGTH |P|W|N|A|T|C|R|R| Chapters ... |

+-+

A recovery journal may hold 0-16 channel journals. The A

flag in the journal header is set to indicate an empty journal;
if A is clear, a list of TOTCHAN+1 channel journals follow the
header. The header provides the sequence number of the
checkpoint packet; the K flag signals checkpoint updates.

The header also includes an S bit, which appears in many
places in the packetization with uniform semantics: the S bit
is set if the structure may be safely ignored the event of the
loss of a single packet (a sequence number break of exactly
one). A set S bit in the header indicates the last packet sent
is a guard packet; lost guard packets can be ignored because
their MIDI command payloads are empty.

At mid-level, a channel journal holds recovery information
for a single MIDI channel. It starts with a 3-byte header,
followed by a list of leaf elements called chapters; a chapter
holds recovery information for a single MIDI command type.

Each chapter type is associated with a letter (for example,
chapter W protects the MIDI PWheel command). A flag bit
for each chapter appears in the table of contents (TOC) lo-
cated in the final byte of the channel journal header. Chap-
ters whose TOC bits are set are present in the list following
the header, in the order of their appearance in the TOC.

Figure 3 shows the format for each chapter. The simplest
chapters (P, W, and T) have a fixed width, and hold the
data bytes for the last MIDI command sent since the check-
point packet. For example, Chapter W protects the PWheel

command; the FIRST and SECOND fields of chapter W code
the data bytes of the most recent PWheel command.

The most complex chapter is Chapter N, which protects
NoteOn and NoteOff commands. It includes a list of 2-
byte note logs, which describe all (non-zero velocity) No-

teOn commands sent since the last checkpoint packet. The
LENGTH field indicates the number of note logs, and the Y

bit indicates that the NoteOn coded by this note log has
recently occurred. Receivers use the Y bit to help determine
whether to play or skip lost NoteOn commands.

Chapter N also includes a bitfield structure to code the
NoteOff commands sent since the last checkpoint packet. It
consists of LOW+HIGH+1 bytes that follow the note logs; the

Figure 3: Chapter Formats

Chapter P (PChange command):

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
+-+

|S| PROGRAM |C| BANK-COARSE |F| BANK-FINE |
+-+

Chapter W (PWheel command):

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|S| FIRST |R| SECOND |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Chapter T (CTouch command):

0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+

|S| PRESSURE |
+-+-+-+-+-+-+-+-+

Chapter N (NoteOn and NoteOff commands):

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 8 0 1
+-+

|B| LENGTH | LOW | HIGH |S| NOTENUM |Y| VELOCITY |
+-+
|S| NOTENUM |Y| VELOCITY | |

+-+
| BITFIELD | BITFIELD | | BITFIELD |

+-+

Chapter A (PTouch command):

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 8 0 1

+-+
|S| LENGTH |F| NOTENUM |R| PRESSURE |F| NOTENUM |

+-+
|R| PRESSURE | |
+-+

Chapter C (CChange command):

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 8 0 1
+-+

|S| LENGTH |F| NUMBER |R| VALUE/COUNT |F| NUMBER |
+-+

|R| VALUE/COUNT | |
+-+

condition LOW > HIGH codes an empty bitfield. A set bit cor-
responds to a sent NoteOff command; the most significant
bit of the first BITFIELD byte codes note number 8 × LOW.
The B bit serves as the S bit for the bitfield structure.

Chapters A and C protect the PTouch and CChange com-
mands, respectively; these chapters are borrow the list struc-
ture of Chapter N. In these chapters, the F bit serves as the
S bit for a list element. The recovery procedure for cer-
tain CChange commands uses the number of times a com-
mand has been sent since the last checkpoint packet, thus
the VALUE/COUNT field name in Chapter C.

A.2 Sending Recovery Journals
Section 7.1 in the main text describes the process of send-

ing recovery journals at a high level of abstraction: the
journal for packet Pi is a modified version of the journal
for packet Pi−1, and these modifications reflect the MIDI
commands sent in packet Pi−1.

The format description in Appendix A.1 adds detail to
this description. The MIDI command in Pi−1 may result
in the addition of a new channel journal or a new chapter,

or may result in the alteration of an existing chapter. Con-
versely, when an RTCP receiver report is processed, chapters
and channels may be trimmed from the journal.

A.3 Receiving Recovery Journals
As described in Section 7.2 in the main text, a receiver

parses a recovery journal when a packet loss has been de-
tected, and schedules MIDI commands on the local Struc-
tured Audio engine to recover from the lost packet(s).

In the common case of a single lost packet, the receiver
can use the S bits of the recovery journal format to locate the
chapter elements that protect the lost packet. The receiver
then compares these elements with data structures that hold
the current MIDI state of the local Structured Audio en-
gine, and decides on the appropriate recovery strategy, in
conjunction with the late flag described in the main text.

For example, if the lost packet contained a NoteOff com-
mand, the receiver analyzes the S and B bits, and determines
that the bitfield structure held the lost data. The receiver
then looks at its local MIDI state, to see if a set bitfield
matched a current NoteOn command active on the channel.
If a match is found, the receiver deduces a “stuck note” is
in progress, and executes a NoteOff command to recover.

When recovering from a multi-packet loss the recovery
journal is parsed completely, and comparisons are made with
local MIDI state to find all potential anomalies.

A.4 Recovery Journal Bandwidth
In this subsection, we perform a simple bandwidth anal-

ysis of the recovery journal system, by examining limiting
cases. We model the MIDI source as a 61-key piano key-
board, that generates data on a single MIDI channel.

We assume the musician is playing with both hands at
a quick tempo, producing NoteOn and NoteOff commands
across the entire keyboard (note numbers 36-96), along with
the occasional PChange command (to change timbres) and
CChange commands using 5 controller numbers (to code
events such as sustain pedalling and volume adjustments).

Given this model, we estimate the musician generates
about 20 MIDI commands per second, implying an RTP
packet is sent on average every 50 ms. At this packet rate,
guard packets are rarely sent; to simply the analysis, we as-
sume guard packets are never sent. The average bandwidth
of the MIDI command section of RTP packets is 640 bits/s.

To begin our analysis of recovery journal bandwidth, we
consider the open-loop case, where RTCP feedback has been
disabled entirely. In this situation, the recovery journal
gradually expands to a limiting size, as the musician ex-
ercises the entire keyboard and performs other actions. We
calculate the limiting size via the following observations:

1. The limiting journal contains a journal header (24 bits)
and a channel journal header (24 bits).

2. The channel journal contains a Chapter P coding the
last timbre change (24 bits) and a Chapter C coding
changes on five controllers (88 bits).

3. Eventually, all 61 keys are touched, and Chapter N
contains a bitfield structure that spans note numbers
36-96 (72 bits). On average, we assume 4 keys are
depressed at a time, and so Chapter N contains 4 note
logs (64 bits). Chapter N also uses 16 bits for its header.

These observation yield a journal size of 312 bits, and
a total payload size of 344 bits (MIDI command and re-

covery journal). The payload data rate is 6880 bits/s (344
bits/packet × 20 packets/second). Note that in an absolute
sense, the packetization is reasonably efficient even without
RTCP feedback: a 6.88 kb/s rate is comparable to the data
rates of modern voice codecs.

Estimating the data rate improvement provided by RTCP
feedback is complex in the general case. Here, we discuss the
simple case of a single receiver and a fixed RTCP reporting
interval of 5 seconds. We assume that RTP and RTCP pack-
ets do not cross in flight: the recovery journal starts in an
empty state, grows in size over 5 seconds as RTP packets are
sent, and empties when an RTCP receiver report is received.

In this scenario, the recovery journal grows in size as 100
RTP packets are sent over 5 seconds. We calculate the jour-
nal size for the 100th RTP packet, by changing our open-
loop analysis in the following ways:

1. Timbre changes are rare → no Chapter P.

2. Over a 5 second interval, Chapter C will code one con-
troller number (chapter size of 24 bits), since most con-
trollers are rarely adjusted.

3. Over a 5 second interval, NoteOff commands are prob-
ably not executed for both the highest and lowest
range of the piano keyboard. We estimate the Chapter
N bitfield structure size to be 56 bits, 22% smaller than
the 72 bit maximum size for a 61-note keyboard.

These estimates yield a maximum journal size of 208 bits.
If we assume worst case scenario of the earliest MIDI com-
mands expanding the journal to full size, we estimate the
payload bandwidth for the packetization with RTCP feed-
back to be 4800 bits/s, a 30% reduction from the open-loop
bandwidth estimate of 6880 bits/s.

B. DETECTING LATE PACKETS
In this Appendix, we describe how the NMP client decides

if an incoming packet is late. The client models the RTP
timestamp value an incoming packet should have if it arrives
on time. When a new packet arrives, the client compares the
packet timestamp tp against the model time tm. If

tm − tp > maxlate (B.1)

the packet is considered late, and the flag variable late is
set. The maxlate value controls the tolerance of the system
to late notes; the current NMP client uses a value of 40 ms.

To model tm, we record the arrival time of the first RTCP
sender report as tf , and record the RTP timestamp field in
the sender report as to. To evaluate tm at some later time
t, we compute

tm = (t− tf) + to. (B.2)

When subsequent RTCP sender reports arrive, we use Equa-
tion B.1 to check the RTP timestamp field of the report. If
the check indicates an on-time arrival, we use the sender
report to update the model parameters tf and to.

This algorithm is tolerant to clock skews between sender
and receiver, and avoids tm model corruption due to late
RTCP sender reports. However, an unforeseen event (such
as a network routing change or a large clock slip) could cor-
rupt the model, causing all packets to be marked as late.

To safeguard against this condition, the client resets tf

and to if all incoming packets during an interval late window

are marked late. The current NMP client uses a late window

value of 3.5 seconds.

