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1. Introduction

The earliest commercially successful electronic music synthesizer keyboards used ana-
log circuits to implement subtractive sound synthesis. These monophonic instruments,
produced by manufacturers such as Moog, Arp, Emu, and Roland in the 1970’s, produce
signature sounds that remain musically useful to this day.

One approach to modeling the voices of these analog instruments on a digital computers
is to emulate the signal processing performed by each oscillator, filter, and amplifier of the
original instrument. Readers interested in taking this approach may consult other chapters
in this book, which describe efficient implementations for signal processing building blocks.

In this chapter, we take a different approach. In Section 2, we analyze the basics of
analog subtractive synthesis, using the simple patch of a square-wave oscillator processed
by a low-pass filter with a dynamically variable cutoff frequency. In Section 3, we show
how a single mathematical function can model both the oscillator and filter together, and
describe an efficient formation for this function (Moorer, 1976; Winhamand & Steiglitz,
1970). Section 4 shows additional applications of this technique.

2. Subtractive Synthesis

The block diagram in Figure 1 shows the spectral processing that underlies subtractive
synthesis. In this diagram, an oscillator with a fixed square waveform shape is coupled to
a low pass filter. Two properties of the system are open to dynamic control: the pitch of
the oscillator and the cutoff frequency of the filter. Not shown are post-processing blocks
to shape the amplitude envelope of the filter output.
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Figure 1. Block diagram for simple subtractive synthesis: a square wave oscillator processed by a low pass

filter whose cutoff frequency is under dynamic control.



Most of the 70’s-era analog synthesizers are monophonic keyboard instruments. The
keyboard input section of these instruments generates an analog voltage that codes the
position of the currently depressed key. In a typical setup, this signal provides the baseline
oscillator pitch and filter cutoff control signals, so that the spectral signature of the sound
scales across the keyboard.

To animate this static sound, oscillator pitch and filter frequency are dynamically
varied around this baseline. Dynamic variation may be applied via specialized circuits
(low-frequency oscillators, envelope generators triggered by a note depression) and by
manual controllers (wheels, paddles, or joysticks that generate a continuous signal).

A square wave oscillator generates a signal that can be described by this function,
expressed as an infinite series:

square(p) = sin(2πp) +
1

3
sin(3 · 2πp) +

1

5
sin(5 · 2πp) + . . . . (1)

Figure 2. Plots show how the series terms in Equation 1 combine to produce a square wave. The top

plot shows the first term of Equation 1, the second plot from the top shows the sum of the first 2 terms of

Equation 1, the third plot from the top shows the sum of the first 3 terms of Equation 1, etc.



We can write this function more compactly using summation notation:

square(p) =
∞∑

k=0

1

2k + 1
sin(2π(2k + 1)p). (2)

The function takes the phase pointer p as an argument. To produce one complete
cycle of the square wave, p is swept from 0.0 to 1.0. To provide intuition that this series
really does produce a square wave, we show in Figure 2 a set of waveforms, showing the
result of summing the first two terms, first three terms, first four terms, etc. As we would
expect from a sound with a clear pitch, a square wave produces a harmonic series – i.e.
all sinusoidal frequencies are integral multiples of the lowest frequency component.

This series formulation lets us plot the spectrum of the square wave directly, by plotting
the coefficients in front of each sine component. Figure 3a shows this spectral plot in
decibel (dB) units, which correspond to how humans perceive relative amplitudes (a 10dB
amplitude increase approximately doubles the perceived loudness at a given frequency).
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Figure 3. (a) Spectral shape of a 200 Hz square wave. (a) Spectral shape of a 200 Hz square wave, filtered

by 24dB/octave low pass filters with cutoff frequencies of 1 kHz, 3 kHz, and 7 kHz as marked.



In Figure 3b, we plot the spectrum for the complete system shown in Figure 1 – a
square wave oscillator processed by low pass filter – for several different values of the filter
cutoff frequency. Dynamic variation of cutoff frequency acts to interpolate the spectrum
between the shown patterns.

As we stated in the introduction, one approach to implementing subtractive synthesis
on digital computers is to emulate the signal processing performed by each component
of the instrument. For the simple system in Figure 1, independent modules for alias-free
square wave generation (Stilson & Smith, 1996) and dynamic filters would be designed and
interconnected.

In this chapter, however, we consider the problem at a higher level of abstraction.
Three properties make the system shown in Figure 1 a good framework for analog musical
instruments:

[1] The type of spectral variation shown in Figure 3b is musically interesting.

[2] This spectral variation occurs by varying a single parameter in a monotonic way.

[3] The method efficiently maps into analog circuits.

In the next section, we a present digital synthesis method that maintains properties
[1] and [2] above, while mapping efficiently onto the digital abstraction.

3. Subtractive Synthesis without Filters

Our goal in this section is to find a single simple algorithm to compute both the
oscillator and filter blocks in Figure 1. One way to approach this problem is to modify
the square-wave generation function shown in Equation 2, so that it incorporates low
pass filtering. The function shown below is an example of this method; this function is
a simplified form of a library function contained in the MPEG 4 Structured Audio signal
processing language (Scheirer and Vercoe, 1999; ISO, 1999).

B(p, a) =
1 − |a|

1 − |aH+1|

H∑

k=0

akcos(2π(k + 1)p). (3)

Like Equation 2, this series is a harmonic series, and it uses a phase pointer p to plot
out one complete cycle of the waveform over the range 0.0 ≤ p ≤ 1.0. The key difference
between this function and Equation 2 is the new parameter a, which has a role similar to
the filter cutoff frequency in the system shown in Figure 1.

Examining Equation 3, we see that a is used to implement parametric scaling: each
sine component 2π(k+1)p is scaled by the value ak. Figure 4a shows the low pass spectral
shapes that this equation generates, for values of a in the range 0.0 < a < 1.0.



Equation 3 is a finite series summation. Using the series summation techniques de-
scribed in (Moore, 1990; Moorer, 1976; Winham & Steiglitz, 1970) it is possible to derive
an exact closed form solution for Equation 3:

B(p, a) =
(1 − a cos(θ))(S1 cos(θ) − S2 cos(Nθ)) − a sin(θ)(S2 sin(Nθ) − S1 sin(θ))

1 − 2a cos(θ) + a2
(4)
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Figure 4. (a) Spectral shapes for a 200 Hz waveform produced using Equation 3, marked with its a value.

(b) Spectral shape for a 200 Hz waveform produced using Equation 7. (c) Spectral shapes for a 200 Hz

waveform produced using Equation 3, for values of a > 1 (as marked), with spectra shifted to start at 0 dB.



Where:

θ = 2πp

N = H + 2

S1 =
1 − |a|

1 − |aH+1|

S2 =
1 − |a|

(1/aH+1) − (|aH+1|/aH+1)

By using Equation 4, we can generate a waveform value using an amount of compu-
tation that is independent of the number of sinusoidal components. If a is a constant,
a waveform data point calculation requires a phase pointer advance, two [sin(x), cos(x)]
calculations, nine multiplies, 5 additions, and one divide.

We can use Equation 4 to directly compute waveform data points for a subtractive
synthesis system. Several issues arise in a practical implementation, which we discuss
below.

Aliasing

In a typical real-time computer music application, audio output samples are sent to
a digital-to-analog converter at a fixed audio sample rate (for example the compact-disc
sampling rate of 44,100 Hz). To avoid unpleasant audio artifacts due to aliasing (see
chapter XXX for more details on aliasing), the output samples should not have frequency
components higher than one half the audio sample rate (for the compact disc sampling
rate, frequency components above 22,050 Hz should not be generated).

Examining Equation 3, we see that the highest frequency component of the generated
waveform is cos(2π(H+1)p). In a typical computer music application, we are sweeping the
phase pointer p over the range 0.0 < a < 1.0, at a bounded rate. For example, in a MIDI
application, a maximum frequency for a note may be estimated by considering the MIDI
note number value and the maximum depth of all pitch modulations. Given this maximum
frequency, and the output sampling rate of the system, we can choose the integral value
of H that ensures aliasing can not occur.

Numerical Issues

To produce clean waveforms over a range of a values, Equation 4 must be computed
using at least single precision (32 bit) IEEE floating point arithmetic or equivalent. In
addition, values of a around unity should be handled with care, as the denominator eval-
uates to zero for a = 1, causing a divide-by-zero error. A simple solution is to detect all a
values within an empirically determined a = 1 ± ε “dangerous regime,” and replace these
values with the nearest safe value.



Trigonometric Computations

The simplest (and slowest) way to compute the sine and cosine functions in Equation
4 is to use the math library functions. A much faster alternative is to use a table lookup
approach. We have implemented a table-driven system that uses a single 2560 element
floating-point table to represent one and one quarter cycles of the sinusoid. We directly
address into this table for sine evaluations, and apply a quarter-cycle offset for cosine
evaluations; no interpolation is done.

The lack of interpolation only results in significant artifacts when the denominator of
Equation 4 is very close to zero. We have found it most efficient to check for this rare
condition, and recompute the values using the library sine and cosine functions.

4. Cascading Multiple Functions

In more advanced synthesis applications, we may wish to cascade several copies of the
function shown in Equation 3, to build up a complex spectral shape. The function shown
below simplifies this task, by adding a new parameter L to specify the lowest frequency
component in the signal.

B(p, a) =
1 − |a|

1 − |aH+1|

L+H∑

k=L

ak−Lcos(2π(k + 1)p). (5)

Like Equation 3, this function can also be expressed in closed form, as:

B(p, a) =
(1 − a cos(θ))(S1 cos(Qθ) − S2 cos(Nθ))− a sin(θ)(S2 sin(Nθ) − S1 sin(Qθ))

1 − 2a cos(θ) + a2

(6)

Where:

θ = 2πp

N = L + H + 2

Q = L + 1

S1 =
1 − |a|

1 − |aH+1|

S2 =
1 − |a|

(1/aH+1) − (|aH+1|/aH+1)

Note that if L has a value of zero, Equation 6 reduces to Equation 4, as expected.
When notating a cascade of functions, we use the notation B(p, H, L, a). For example, the
equation:



f(p) = B(p, 3, 0, 0.5) + 0.5073 B(p, 12, 4, 0.92) (7)

describes a spectrum with a spectrum whose partials fall in amplitude quickly for lower
frequencies, and more gradually for higher frequencies. The weighting value 0.5073 was
chosen to match the spectral amplitudes at the crossover point. Figure 4b shows the
spectrum produced by this function.

In a cascaded configuration, values a > 1 may be useful to generate spectral sections
of increasing slope. Figure 4c shows the spectral shapes generates by values of a in this
regime.
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