
Vol. 2B 4-1

CHAPTER 4
INSTRUCTION SET REFERENCE, N-Z

4.1 IMM8 CONTROL BYTE OPERATION FOR PCMPESTRI / PCMPESTRM /
PCMPISTRI / PCMPISTRM

The notations introduced in this section are referenced in the reference pages of PCMPESTRI, PCMPESTRM, PCMP-
ISTRI, PCMPISTRM. The operation of the immediate control byte is common to these four string text processing
instructions of SSE4.2. This section describes the common operations.

4.1.1 General Description
The operation of PCMPESTRI, PCMPESTRM, PCMPISTRI, PCMPISTRM is defined by the combination of the respec-
tive opcode and the interpretation of an immediate control byte that is part of the instruction encoding.

The opcode controls the relationship of input bytes/words to each other (determines whether the inputs terminated
strings or whether lengths are expressed explicitly) as well as the desired output (index or mask).

The Imm8 Control Byte for PCMPESTRM/PCMPESTRI/PCMPISTRM/PCMPISTRI encodes a significant amount of
programmable control over the functionality of those instructions. Some functionality is unique to each instruction
while some is common across some or all of the four instructions. This section describes functionality which is
common across the four instructions.

The arithmetic flags (ZF, CF, SF, OF, AF, PF) are set as a result of these instructions. However, the meanings of the
flags have been overloaded from their typical meanings in order to provide additional information regarding the
relationships of the two inputs.

PCMPxSTRx instructions perform arithmetic comparisons between all possible pairs of bytes or words, one from
each packed input source operand. The boolean results of those comparisons are then aggregated in order to
produce meaningful results. The Imm8 Control Byte is used to affect the interpretation of individual input elements
as well as control the arithmetic comparisons used and the specific aggregation scheme.

Specifically, the Imm8 Control Byte consists of bit fields that control the following attributes:

• Source data format — Byte/word data element granularity, signed or unsigned elements

• Aggregation operation — Encodes the mode of per-element comparison operation and the aggregation of
per-element comparisons into an intermediate result

• Polarity — Specifies intermediate processing to be performed on the intermediate result

• Output selection — Specifies final operation to produce the output (depending on index or mask) from the
intermediate result

4.1.2 Source Data Format

If the Imm8 Control Byte has bit[0] cleared, each source contains 16 packed bytes. If the bit is set each source

Table 4-1. Source Data Format

Imm8[1:0] Meaning Description

00b Unsigned bytes Both 128-bit sources are treated as packed, unsigned bytes.

01b Unsigned words Both 128-bit sources are treated as packed, unsigned words.

10b Signed bytes Both 128-bit sources are treated as packed, signed bytes.

11b Signed words Both 128-bit sources are treated as packed, signed words.

INSTRUCTION SET REFERENCE, N-Z

4-2 Vol. 2B

contains 8 packed words. If the Imm8 Control Byte has bit[1] cleared, each input contains unsigned data. If the
bit is set each source contains signed data.

4.1.3 Aggregation Operation

All 256 (64) possible comparisons are always performed. The individual Boolean results of those comparisons are
referred by “BoolRes[Reg/Mem element index, Reg element index].” Comparisons evaluating to “True” are repre-
sented with a 1, False with a 0 (positive logic). The initial results are then aggregated into a 16-bit (8-bit) inter-
mediate result (IntRes1) using one of the modes described in the table below, as determined by Imm8 Control Byte
bit[3:2].

See Section 4.1.6 for a description of the overrideIfDataInvalid() function used in Table 4-3.

Table 4-2. Aggregation Operation

Imm8[3:2] Mode Comparison

00b Equal any The arithmet ic comparison is “equal.”

01b Ranges Arithmet ic comparison is “greater than or equal” between even indexed bytes/words of reg and
each byte/word of reg/mem.

Arithmet ic comparison is “less than or equal” between odd indexed bytes/words of reg and each
byte/word of reg/mem.

(reg/mem[m] >= reg[n] for n = even, reg/mem[m] <= reg[n] for n = odd)

10b Equal each The arithmet ic comparison is “equal.”

11b Equal ordered The arithmet ic comparison is “equal.”

Table 4-3. Aggregation Operation

Mode Pseudocode

Equal any

(f ind characters from a set)

UpperBound = imm8[0] ? 7 : 15;

IntRes1 = 0;

For j = 0 to UpperBound, j++

For i = 0 to UpperBound, i++

IntRes1[j] OR= overrideIfDataInvalid(BoolRes[j,i])

Ranges

(f ind characters from ranges)

UpperBound = imm8[0] ? 7 : 15;

IntRes1 = 0;

For j = 0 to UpperBound, j++

For i = 0 to UpperBound, i+=2

IntRes1[j] OR= (overrideIfDataInvalid(BoolRes[j,i]) AND
overrideIfDataInvalid(BoolRes[j,i+1]))

Equal each

(string compare)

UpperBound = imm8[0] ? 7 : 15;

IntRes1 = 0;

For i = 0 to UpperBound, i++

IntRes1[i] = overrideIfDataInvalid(BoolRes[i,i])

Equal ordered

(substring search)

UpperBound = imm8[0] ? 7 :15;

IntRes1 = imm8[0] ? 0xFF : 0xFFFF

For j = 0 to UpperBound, j++

For i = 0 to UpperBound-j, k=j to UpperBound, k++, i++

IntRes1[j] AND= overrideIfDataInvalid(BoolRes[k,i])

INSTRUCTION SET REFERENCE, N-Z

Vol. 2B 4-3

4.1.4 Polarity
IntRes1 may then be further modified by performing a 1’s complement, according to the value of the Imm8 Control
Byte bit[4]. Optionally, a mask may be used such that only those IntRes1 bits which correspond to “valid” reg/mem
input elements are complemented (note that the definition of a valid input element is dependant on the specific
opcode and is defined in each opcode’s description). The result of the possible negation is referred to as IntRes2.

4.1.5 Output Selection

For PCMPESTRI/PCMPISTRI, the Imm8 Control Byte bit[6] is used to determine if the index is of the least signifi-
cant or most significant bit of IntRes2.

Specifically for PCMPESTRM/PCMPISTRM, the Imm8 Control Byte bit[6] is used to determine if the mask is a 16 (8)
bit mask or a 128 bit byte/word mask.

4.1.6 Valid/Invalid Override of Comparisons
PCMPxSTRx instructions allow for the possibility that an end-of-string (EOS) situation may occur within the 128-bit
packed data value (see the instruction descriptions below for details). Any data elements on either source that are
determined to be past the EOS are considered to be invalid, and the treatment of invalid data within a comparison
pair varies depending on the aggregation function being performed.

In general, the individual comparison result for each element pair BoolRes[i.j] can be forced true or false if one or
more elements in the pair are invalid. See Table 4-7.

Table 4-4. Polarit y

Imm8[5:4] Operation Description

00b Posit ive Polarity (+) IntRes2 = IntRes1

01b Negat ive Polarity (-) IntRes2 = -1 XOR IntRes1

10b Masked (+) IntRes2 = IntRes1

11b Masked (-) IntRes2[i] = IntRes1[i] if reg/mem[i] invalid, e lse = ~IntRes1[i]

Table 4-5. Ouput Selection
Imm8[6] Operation Description

0b Least signif icant index The index returned to ECX is of the least signif icant set bit in IntRes2.

1b Most signif icant index The index returned to ECX is of the most signif icant set bit in IntRes2.

Table 4-6. Output Selection
Imm8[6] Operation Description

0b Bit mask IntRes2 is returned as the mask to the least signif icant bits of XMM0 w ith zero extension to 128
bits.

1b Byte/word mask IntRes2 is expanded into a byte/word mask (based on imm8[1]) and placed in XMM0. The
expansion is performed by replicat ing each bit into all of the bits of the byte/word of the same
index.

INSTRUCTION SET REFERENCE, N-Z

4-4 Vol. 2B

4.1.7 Summary of Im8 Control by te

Table 4-7. Comparison Result for Each Element Pair BoolRes[i.j]

xmm1
byte / word

xmm2 / m1 28
byte / word

Imm8[3:2] = 00b
(equal any)

Imm8[3:2] = 01b
(ranges)

Imm8[3:2] = 10b
(equal each)

Imm8[3:2] = 11b
(equal ordered)

Invalid Invalid Force false Force false Force true Force true

Invalid Valid Force false Force false Force false Force true

Valid Invalid Force false Force false Force false Force false

Valid Valid Do not force Do not force Do not force Do not force

Table 4-8. Summary of Imm8 Control Byte
Imm8 Description

-------0b 128-bit sources treated as 16 packed bytes.

-------1b 128-bit sources treated as 8 packed words.

------0-b Packed bytes/words are unsigned.

------1-b Packed bytes/words are signed.

----00--b Mode is equal any.

----01--b Mode is ranges.

----10--b Mode is equal each.

----11--b Mode is equal ordered.

---0----b IntRes1 is unmodif ied.

---1----b IntRes1 is negated (1’s complement).

--0-----b Negat ion of IntRes1 is for all 16 (8) bits.

--1-----b Negat ion of IntRes1 is masked by reg/mem validity.

-0------b Index of the least signif icant , set , bit is used (regardless of corresponding input element validity).

IntRes2 is returned in least signif icant bits of XMM0.

-1------b Index of the most signif icant , set , bit is used (regardless of corresponding input element validity).

Each bit of IntRes2 is expanded to byte/word.

0-------b This bit current ly has no def ined effect , should be 0.

1-------b This bit current ly has no def ined effect , should be 0.

INSTRUCTION SET REFERENCE, N-Z

Vol. 2B 4-5

4.1.8 Diagram Comparison and Aggregation Process

4.2 INSTRUCTIONS (N-Z)
Chapter 4 continues an alphabetical discussion of Intel® 64 and IA-32 instructions (N-Z). See also: Chapter 3,
“Instruction Set Reference, A-M,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2A.

Figure 4-1. Operation of PCMPSTRx and PCMPESTRx

PCMPESTRI — Packed Compare Explicit Length Strings, Return Index

INSTRUCTION SET REFERENCE, N-Z

Vol. 2B 4-77

PCMPESTRI — Packed Compare Explicit Length Strings, Return Index

Instruction Operand Encoding

Description

The instruction compares and processes data from two string fragments based on the encoded value in the Imm8
Control Byte (see Section 4.1, “Imm8 Control Byte Operation for PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMP-
ISTRM”), and generates an index stored to the count register (ECX/RCX).

Each string fragment is represented by two values. The first value is an xmm (or possibly m128 for the second
operand) which contains the data elements of the string (byte or word data). The second value is stored in an input
length register. The input length register is EAX/RAX (for xmm1) or EDX/RDX (for xmm2/m128). The length repre-
sents the number of bytes/words which are valid for the respective xmm/m128 data.

The length of each input is interpreted as being the absolute-value of the value in the length register. The absolute-
value computation saturates to 16 (for bytes) and 8 (for words), based on the value of imm8[bit3] when the value
in the length register is greater than 16 (8) or less than -16 (-8).

The comparison and aggregation operations are performed according to the encoded value of Imm8 bit fields (see
Section 4.1). The index of the first (or last, according to imm8[6]) set bit of IntRes2 (see Section 4.1.4) is returned
in ECX. If no bits are set in IntRes2, ECX is set to 16 (8).

Note that the Arithmetic Flags are written in a non-standard manner in order to supply the most relevant informa-
tion:

CFlag – Reset if IntRes2 is equal to zero, set otherw ise
ZFlag – Set if absolute-value of EDX is < 16 (8), reset otherw ise
SFlag – Set if absolute-value of EAX is < 16 (8), reset otherw ise
OFlag – IntRes2[0]
AFlag – Reset
PFlag – Reset

Ef fective Operand Size

Intel C/C++ Compiler Intrinsic Equivalent For Returning Index

int _mm_cmpestri (__m128 i a, int la, __m128i b, int lb, const int mode);

Opcode /
Instruction

Op/
En

64 / 32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 61 /r imm8
PCMPESTRI xmm1, xmm2/m128, imm8

RMI V/V SSE4_2 Perform a packed comparison of string data
w ith explicit lengths, generat ing an index, and
storing the result in ECX.

VEX.128.66.0F3A.WIG 61 /r ib
VPCMPESTRI xmm1, xmm2/m128, imm8

RMI V/V AVX Perform a packed comparison of string data
w ith explicit lengths, generat ing an index, and
storing the result in ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r) ModRM:r/m (r) imm8 NA

Operating mode /size Operand 1 Operand 2 Length 1 Length 2 Result

16 bit xmm xmm/m128 EAX EDX ECX

32 bit xmm xmm/m128 EAX EDX ECX

64 bit xmm xmm/m128 EAX EDX ECX

64 bit + REX.W xmm xmm/m128 RAX RDX RCX

PCMPESTRI — Packed Compare Explicit Length Strings, Return Index

INSTRUCTION SET REFERENCE, N-Z

4-78 Vol. 2B

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpestra (__m128 i a, int la, __m128i b, int lb, const int mode);

int _mm_cmpestrc (__m128 i a, int la, __m128 i b, int lb, const int mode);

int _mm_cmpestro (__m128 i a, int la, __m128 i b, int lb, const int mode);

int _mm_cmpestrs (__m128 i a, int la, __m128i b, int lb, const int mode);

int _mm_cmpestrz (__m128 i a, int la, __m128i b, int lb, const int mode);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally, this instruction does not cause #GP if the memory operand is not aligned to 16
Byte boundary, and
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.

PCMPESTRM — Packed Compare Explicit Length Strings, Return Mask

INSTRUCTION SET REFERENCE, N-Z

Vol. 2B 4-79

PCMPESTRM — Packed Compare Explicit Length Strings, Return Mask

Instruction Operand Encoding

Description

The instruction compares data from two string fragments based on the encoded value in the imm8 contol byte (see
Section 4.1, “Imm8 Control Byte Operation for PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM”), and gener-
ates a mask stored to XMM0.

Each string fragment is represented by two values. The first value is an xmm (or possibly m128 for the second
operand) which contains the data elements of the string (byte or word data). The second value is stored in an input
length register. The input length register is EAX/RAX (for xmm1) or EDX/RDX (for xmm2/m128). The length repre-
sents the number of bytes/words which are valid for the respective xmm/m128 data.

The length of each input is interpreted as being the absolute-value of the value in the length register. The absolute-
value computation saturates to 16 (for bytes) and 8 (for words), based on the value of imm8[bit3] when the value
in the length register is greater than 16 (8) or less than -16 (-8).

The comparison and aggregation operations are performed according to the encoded value of Imm8 bit fields (see
Section 4.1). As defined by imm8[6], IntRes2 is then either stored to the least significant bits of XMM0 (zero
extended to 128 bits) or expanded into a byte/word-mask and then stored to XMM0.

Note that the Arithmetic Flags are written in a non-standard manner in order to supply the most relevant informa-
tion:

CFlag – Reset if IntRes2 is equal to zero, set otherw ise
ZFlag – Set if absolute-value of EDX is < 16 (8), reset otherw ise
SFlag – Set if absolute-value of EAX is < 16 (8), reset otherw ise
OFlag –IntRes2[0]
AFlag – Reset
PFlag – Reset

Note: In VEX.128 encoded versions, bits (VLMAX-1:128) of XMM0 are zeroed. VEX.vvvv is reserved and must be
1111b, VEX.L must be 0, otherwise the instruction will #UD.

Opcode /
Instruction

Op/
En

64 / 32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 60 /r imm8
PCMPESTRM xmm1, xmm2/m128, imm8

RMI V/V SSE4_2 Perform a packed comparison of string data
w ith explicit lengths, generat ing a mask, and
storing the result in XMM0

VEX.128.66.0F3A.WIG 60 /r ib
VPCMPESTRM xmm1, xmm2/m128, imm8

RMI V/V AVX Perform a packed comparison of string data
w ith explicit lengths, generat ing a mask, and
storing the result in XMM0.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r) ModRM:r/m (r) imm8 NA

PCMPESTRM — Packed Compare Explicit Length Strings, Return Mask

INSTRUCTION SET REFERENCE, N-Z

4-80 Vol. 2B

Ef fective Operand Size

Intel C/C++ Compiler Intrinsic Equivalent For Returning Mask

__m128 i _mm_cmpestrm (__m128i a, int la, __m128 i b, int lb, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpestra (__m128 i a, int la, __m128i b, int lb, const int mode);

int _mm_cmpestrc (__m128 i a, int la, __m128 i b, int lb, const int mode);

int _mm_cmpestro (__m128 i a, int la, __m128 i b, int lb, const int mode);

int _mm_cmpestrs (__m128 i a, int la, __m128i b, int lb, const int mode);

int _mm_cmpestrz (__m128 i a, int la, __m128i b, int lb, const int mode);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally, this instruction does not cause #GP if the memory operand is not aligned to 16
Byte boundary, and
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.

Operating mode /size Operand1 Operand 2 Length1 Length2 Result

16 bit xmm xmm/m128 EAX EDX XMM0

32 bit xmm xmm/m128 EAX EDX XMM0

64 bit xmm xmm/m128 EAX EDX XMM0

64 bit + REX.W xmm xmm/m128 RAX RDX XMM0

PCMPISTRI — Packed Compare Implicit Length Strings, Return Index

INSTRUCTION SET REFERENCE, N-Z

Vol. 2B 4-87

PCMPISTRI — Packed Compare Implicit Length Strings, Return Index

Instruction Operand Encoding

Description

The instruction compares data from two strings based on the encoded value in the Imm8 Control Byte (see Section
4.1, “Imm8 Control Byte Operation for PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM”), and generates an
index stored to ECX.

Each string is represented by a single value. The value is an xmm (or possibly m128 for the second operand) which
contains the data elements of the string (byte or word data). Each input byte/word is augmented with a
valid/invalid tag. A byte/word is considered valid only if it has a lower index than the least significant null
byte/word. (The least significant null byte/word is also considered invalid.)

The comparison and aggregation operations are performed according to the encoded value of Imm8 bit fields (see
Section 4.1). The index of the first (or last, according to imm8[6]) set bit of IntRes2 is returned in ECX. If no bits
are set in IntRes2, ECX is set to 16 (8).

Note that the Arithmetic Flags are written in a non-standard manner in order to supply the most relevant informa-
tion:

CFlag – Reset if IntRes2 is equal to zero, set otherw ise
ZFlag – Set if any byte/word of xmm2/mem128 is null, reset otherw ise
SFlag – Set if any byte/word of xmm1 is null, reset otherw ise
OFlag –IntRes2[0]
AFlag – Reset
PFlag – Reset

Note: In VEX.128 encoded version, VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the
instruction will #UD.

Ef fective Operand Size

Opcode /
Instruction

Op/
En

64 / 32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 63 /r imm8
PCMPISTRI xmm1, xmm2/m128, imm8

RM V/V SSE4_2 Perform a packed comparison of string data
w ith implicit lengths, generat ing an index , and
storing the result in ECX.

VEX.128.66.0F3A.WIG 63 /r ib
VPCMPISTRI xmm1, xmm2/m128, imm8

RM V/V AVX Perform a packed comparison of string data
w ith implicit lengths, generat ing an index , and
storing the result in ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) imm8 NA

Operating mode /size Operand1 Operand 2 Result

16 bit xmm xmm/m128 ECX

32 bit xmm xmm/m128 ECX

64 bit xmm xmm/m128 ECX

64 bit + REX.W xmm xmm/m128 RCX

PCMPISTRI — Packed Compare Implicit Length Strings, Return Index

INSTRUCTION SET REFERENCE, N-Z

4-88 Vol. 2B

Intel C/C++ Compiler Intrinsic Equivalent For Returning Index

int _mm_cmpistri (__m128 i a, __m128i b, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpistra (__m128 i a, __m128 i b, const int mode);

int _mm_cmpistrc (__m128i a, __m128 i b, const int mode);

int _mm_cmpistro (__m128 i a, __m128i b, const int mode);

int _mm_cmpistrs (__m128 i a, __m128 i b, const int mode);

int _mm_cmpistrz (__m128 i a, __m128i b, const int mode);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally, this instruction does not cause #GP if the memory operand is not aligned to 16
Byte boundary, and
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.

PCMPISTRM — Packed Compare Implicit Length Strings, Return Mask

INSTRUCTION SET REFERENCE, N-Z

Vol. 2B 4-89

PCMPISTRM — Packed Compare Implicit Length Strings, Return Mask

Instruction Operand Encoding

Description

The instruction compares data from two strings based on the encoded value in the imm8 byte (see Section 4.1,
“Imm8 Control Byte Operation for PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM”) generating a mask
stored to XMM0.

Each string is represented by a single value. The value is an xmm (or possibly m128 for the second operand) which
contains the data elements of the string (byte or word data). Each input byte/word is augmented with a
valid/invalid tag. A byte/word is considered valid only if it has a lower index than the least significant null
byte/word. (The least significant null byte/word is also considered invalid.)

The comparison and aggregation operation are performed according to the encoded value of Imm8 bit fields (see
Section 4.1). As defined by imm8[6], IntRes2 is then either stored to the least significant bits of XMM0 (zero
extended to 128 bits) or expanded into a byte/word-mask and then stored to XMM0.

Note that the Arithmetic Flags are written in a non-standard manner in order to supply the most relevant informa-
tion:

CFlag – Reset if IntRes2 is equal to zero, set otherw ise
ZFlag – Set if any byte/word of xmm2/mem128 is null, reset otherw ise
SFlag – Set if any byte/word of xmm1 is null, reset otherw ise
OFlag – IntRes2[0]
AFlag – Reset
PFlag – Reset

Note: In VEX.128 encoded versions, bits (VLMAX-1:128) of XMM0 are zeroed. VEX.vvvv is reserved and must be
1111b, VEX.L must be 0, otherwise the instruction will #UD.

Ef fective Operand Size

Intel C/C++ Compiler Intrinsic Equivalent For Returning Mask

__m128 i _mm_cmpistrm (__m128i a, __m128 i b, const int mode);

Opcode /
Instruction

Op/
En

64 / 32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 62 /r imm8
PCMPISTRM xmm1, xmm2/m128, imm8

RM V/V SSE4_2 Perform a packed comparison of string data
w ith implicit lengths, generat ing a mask, and
storing the result in XMM0.

VEX.128.66.0F3A.WIG 62 /r ib
VPCMPISTRM xmm1, xmm2/m128, imm8

RM V/V AVX Perform a packed comparison of string data
w ith implicit lengths, generat ing a Mask, and
storing the result in XMM0.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) imm8 NA

Operating mode /size Operand1 Operand 2 Result

16 bit xmm xmm/m128 XMM0

32 bit xmm xmm/m128 XMM0

64 bit xmm xmm/m128 XMM0

64 bit + REX.W xmm xmm/m128 XMM0

PCMPISTRM — Packed Compare Implicit Length Strings, Return Mask

INSTRUCTION SET REFERENCE, N-Z

4-90 Vol. 2B

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpistra (__m128 i a, __m128 i b, const int mode);

int _mm_cmpistrc (__m128i a, __m128 i b, const int mode);

int _mm_cmpistro (__m128 i a, __m128i b, const int mode);

int _mm_cmpistrs (__m128 i a, __m128 i b, const int mode);

int _mm_cmpistrz (__m128 i a, __m128i b, const int mode);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally, this instruction does not cause #GP if the memory operand is not aligned to 16
Byte boundary, and
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.

