
CHAPTER 10 SSE4.2 AND SIMD PROGRAMMING FOR TEXT-
PROCESSING/LEXING/PARSING

String/text processing spans a discipline that often employs techniques different from traditional SIMD
integer vector processing. Much of the traditional string/text algorithms are character based, where
characters may be represented by encodings (or code points) of fixed or variable byte sizes. Textual data
represents a vast amount of raw data and often carrying contextual information. The contextual informa-
tion embedded in raw textual data often requires algorithmic processing dealing with a wide range of
attributes, such as character values, character positions, character encoding formats, subsetting of char-
acter sets, strings of explicit or implicit lengths, tokens, delimiters; contextual objects may be repre-
sented by sequential characters within a pre-defined character subsets (e.g. decimal-valued strings);
textual streams may contain embedded state transitions separating objects of different contexts (e.g.
tag-delimited fields).

Traditional Integer SIMD vector instructions may, in some simpler situations, be successful to speed up
simple string processing functions. SSE4.2 includes four new instructions that offer advances to compu-
tational algorithms targeting string/text processing, lexing and parsing of either unstructured or struc-
tured textual data.

10.1 SSE4.2 STRING AND TEXT INSTRUCTIONS
SSE4.2 provides four instructions, PCMPESTRI/PCMPESTRM/PCMPISTRI/PCMPISTRM that can accelerate
string and text processing by combining the efficiency of SIMD programming techniques and the lexical
primitives that are embedded in these 4 instructions. Simple examples of these instructions include
string length determination, direct string comparison, string case handling, delimiter/token processing,
locating word boundaries, locating sub-string matches in large text blocks. Sophisticated application of
SSE4.2 can accelerate XML parsing and Schema validation.

Processor’s support for SSE4.2 is indicated by the feature flag value returned in ECX [bit 20] after
executing CPUID instruction with EAX input value of 1 (i.e. SSE4.2 is supported if
CPUID.01H:ECX.SSE4_2 [bit 20] = 1). Therefore, software must verify CPUID.01H:ECX.SSE4_2 [bit 20]
is set before using these 4 instructions. (Verifying CPUID.01H:ECX.SSE4_2 = 1 is also required before
using PCMPGTQ or CRC32. Verifying CPUID.01H:ECX.POPCNT[Bit 23] = 1 is required before using the
POPCNT instruction.)

These string/text processing instructions work by performing up to 256 comparison operations on text
fragments. Each text fragment can be 16 bytes. They can handle fragments of different formats: either
byte or word elements. Each of these four instructions can be configured to perform four types of parallel
comparison operation on two text fragments.

The aggregated intermediate result of a parallel comparison of two text fragments become a bit
patterns:16 bits for processing byte elements or 8 bits for word elements. These instruction provide
additional flexibility, using bit fields in the immediate operand of the instruction syntax, to configure an
unary transformation (polarity) on the first intermediate result.

Lastly, the instruction’s immediate operand offers a output selection control to further configure the flex-
ibility of the final result produced by the instruction. The rich configurability of these instruction is
summarized in Figure 10-1.

SSE4.2 AND SIMD PROGRAMMING FOR TEXT- PROCESSING/LEXING/PARSING

10-2

The PCMPxSTRI instructions produce final result as an integer index in ECX, the PCMPxSTRM instructions
produce final result as a bit mask in the XMM0 register. The PCMPISTRy instructions support processing
string/text fragments using implicit length control via null termination for handling string/text of
unknown size. the PCMPESTRy instructions support explicit length control via EDX:EAX register pair to
specify the length text fragments in the source operands.

The first intermediate result, IntRes1, is an aggregated result of bit patterns from parallel comparison
operations done on pairs of data elements from each text fragment, according to the imm[3:2] bit field
encoding, see Table 10-1.

Input data element format selection using imm[1:0] can support signed or unsigned byte/word
elements.

The bit field imm[5:4] allows applying a unary transformation on IntRes1, see Table 10-2.

Figure 10-1. SSE4.2 String/Text Instruction Immediate Operand Control

Table 10-1. SSE4.2 String/Text Instructions Compare Operation on N-elements

Imm[3:2] Name IntRes1[i] is TRUE if Potential Usage

00B Equal Any Element i in fragment2 matches any element j in
fragment1

Tokenization, XML parser

01B Ranges Element i in fragment2 is within any range pairs specified
in fragment1

Subsetting, Case handling,
XML parser, Schema validation

10B Equal Each Element i in fragment2 matches element i in fragment1 Strcmp()

11B Equal
Ordered

Element i and subsequent, consecutive valid elements in
fragment2 match fully or partially with fragment1 starting
from element 0

Substring Searches, KMP, Strstr()

Fragment1

0

IntRes1

Data Format Imm[1:0]:

Imm[3:2]

Imm[5:4]

PCMPxSTRy XMM1, XMM2/M128, imm

Fragment2 of words
127

015|7
015|7

IntRes2

031

Imm[6] Imm[6]

Index Result Mask Result

Compare
Polarity

Output
Select

00b: unsigned bytes
01b: unsigned words
10b: signed bytes
11b: signed words

XMM0ECX

10-3

SSE4.2 AND SIMD PROGRAMMING FOR TEXT- PROCESSING/LEXING/PARSING

The output selection field, imm[6] is described in Table 10-3.

The comparison operation on each data element pair is defined in Table 10-4. Table 10-4 defines the type
of comparison operation between valid data elements (last row of Table 10-4) and boundary conditions
when the fragment in a source operand may contain invalid data elements (rows 1 through 3 of
Table 10-4). Arithmetic comparison are performed only if both data elements are valid element in
fragment1 and fragment2, as shown in row 4 of Table 10-4.

The string and text processing instruction provides several aid to handle end-of-string situations, see
Table 10-5. Additionally, the PCMPxSTRy instructions are designed to not require 16-byte alignment to
simplify text processing requirements.

Table 10-2. SSE4.2 String/Text Instructions Unary Transformation on IntRes1

Imm[5:4] Name IntRes2[i] = Potential Usage

00B No Change IntRes1[i]

01B Invert -IntRes1[i]

10B No Change IntRes1[i]

11B Mask Negative IntRes1[i] if element i of fragment2 is invalid, otherwise -
IntRes1[i]

Table 10-3. SSE4.2 String/Text Instructions Output Selection Imm[6]

Imm[6] Instruction Final Result Potential Usage

0B PCMPxSTRI ECX = offset of least significant bit set in IntRes2 if
IntRes2 != 0, otherwise
ECX = number of data element per 16 bytes

0B PCMPxSTRM XMM0 = ZeroExtend(IntRes2);

1B PCMPxSTRI ECX = offset of most significant bit set in IntRes2 if
IntRes2 != 0, otherwise
ECX = number of data element per 16 bytes

1B PCMPxSTRM Data element i of XMM0 = SignExtend(IntRes2[i]);

Table 10-4. SSE4.2 String/Text Instructions Element-Pair Comparison Definition

fragment1
element

fragment2
element

Imm[3:2]=
00B, Equal Any

Imm[3:2]=
01B, Ranges

Imm[3:2]=
10B, Equal Each

Imm[3:2]=
11B, Equal Ordered

invalid invalid Force False Force False Force True Force True

invalid valid Force False Force False Force False Force True

valid invalid Force False Force False Force False Force False

valid valid Compare Compare Compare Compare

Table 10-5. SSE4.2 String/Text Instructions Eflags Behavior

EFLAGs Description Potential Usage

CF Reset if IntRes2 = 0; Otherwise set When CF=0, ECX= #of data element to scan next

ZF Reset if entire 16-byte fragment2 is valid likely end-of-string

SF Reset if entire 16-byte fragment1 is valid

OF IntRes2[0];

