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Over the past 2 months ...

Time-Domain 
Algorithms 
for 
Sound 
Modification 
and Analysis
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Recall: Note-level Time Warping

Time
Shrink

Time
Stretch

Length of attack transient unchanged. 
Time warp only affects sustained region.

Local temporal properties of sustained 
region unchanged (example: vibrato speed)

Long-range properties of sustained region 
stretch or shrink (example: crescendos).

We now look at time warping algorithms for this problem ...



Recall: Tune each Δti to minimize artifacts, and then 
create final waveform by summing all blocks, doing a 
crossfade at the overlaps.

“overlap and add” - OLA

“Synchronous OLA” - SOLA

Tuning Δti is primary 
way methods differ.

PSOLA,WSOLA, 
PICOLA, ... 

Another trick: Detect 
transients, don’t OLA them. First 
use: Lexicon 2400, 1986.
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Recall: Pitch shifting

+5 semitones = (12√2) 5 = 1.33483985

1.33483985 f

2.66967971 f

4.00451956 f

5.33935942 f

6.67419927 f

9598 Neurobiology: Lazzaro and Mead
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FIG. 1. Block diagram of the pitch-perception chip. Sound enters the silicon cochlea at the lower left of the figure. Circuits that model inner
hair cells and spiral-ganglion neurons tap the silicon cochlea at 62 equally spaced locations; square boxes marked with a pulse represent these
circuits. Spiral-ganglion-neuron circuits connect to discrete delay lines that span the width of the chip. A small rectangular box, marked with
a dot, represents a delay-line section; there are 170 sections in each delay line. A correlation-neuron circuit, represented by a small circle, is
associated with each delay-line section. A correlation neuron receives connection from its delay-line section and from the spiral-ganglion-neuron
circuit that drives its delay line. Vertical wires, which span the array, sum the response of all correlation neurons that correspond to a specific
time delay. These 170 vertical wires form a temporally smoothed map of perceived pitch. The nonlinear inhibition circuit near the bottom of
the figure increases the selectivity of this map; the time-multiplexing scanner sends this map off the chip.

inner-hair-cell circuit connects to a spiral-ganglion-neuron
circuit. This integrate-to-threshold neuron circuit converts
the analog output ofthe inner-hair-cell model into fixed-width
fixed-height pulses. This structure preserves timing informa-
tion by greatly increasing the probability of pulse events near
the zero crossings ofthe derivative ofthe neuron's input (14).
The portion of the chip explained thus far models the

known structures ofthe auditory periphery. The remainder of
the chip implements proposed neural structures in the brain.
In the chip, each spiral-ganglion-neuron circuit connects to a
discrete delay line; for each input pulse, a fixed-width fixed-
height pulse travels through the delay line, section by section,
at a controllable velocity (11). After the circuit has been
excited with a single pulse, only one section of the delay line
is firing at any point in time. The delay of each section is set
not by a global clock, but by a local time constant; due to
circuit-element imperfections, section delay times have a
spatial standard deviation of about 20%o of the mean.
A correlation-neuron circuit is associated with each delay-

line section; this circuit receives aconnection from the output
of its delay-line section and from the spiral-ganglion-neuron
circuit that drives the delay line. Simultaneous pulses at both
inputs excite the correlation-neuron circuit; if only one input
is active, the circuit generates no output. Each row of
correlation neurons, associated with a spiral-ganglion neu-
ron, forms a place code of periodicity. A spiral-ganglion
neuron fires in a repeating pattern, on average, in response to
a periodic signal in the appropriate frequency range. Corre-
lation neurons that fire maximally receive this repeating
pattern simultaneously on both inputs; the time delay asso-
ciated with this correlation neuron is an integer multiple of
the period of the signal. In engineering terms, each correla-
tion neuron computes the running autocorrelation function of
a filtered version of the sound input for a particular time
delay.

In 1951, Licklider (2) proposed this neural autocorrelation
structure as a periodicity representation that could be imple-

mented plausibly with synaptic delays in neural circuitry.
Although no direct physiological evidence for these autocor-
relation structures has been discovered, Carr and Konishi
(10) have found direct evidence for cross-correlation struc-
tures for auditory localization in the midbrain ofthe barn owl;
these structures use axonal time delays to compute a place
code of interaural time delay.

Fig. 2 shows the utility of neural autocorrelation structures
in the perception of the pitch of a weighted harmonic sum of
sinusoids with frequencies (f, 2f, 3f, 4f, . . . ). Due to the
filtering action of the cochlea, different sinusoids are pre-
dominant in different autocorrelators throughout the chip.
Cochlear processing is idealized in Fig. 2; the figure shows an
analog representation of the signals in the delay lines across
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FIG. 2. Analog representation of the signals in the delay lines
across the chip in response to a harmonic signal. Cochlear processing
is idealized (fully resolved harmonic components, perfect half-wave
rectification, no temporal smoothing). Peaks of activity in the
horizontal direction coincide with peaks inf, shown by vertical lines.
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Recall: Resample + Time Stretch

Resample at 
new pitch

Time-stretch 
to old length

Resampling
preserves the 
magnitude of 
each partial.

Instead, we 
want formant 
frequencies to 
stay fixed ...
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Recall: Beat-slicing pitch periods 
L

New local 
pitch:
Three 
pitch 

periods 
per unit 

“L”

A

B

D

Apart from “edge artifacts”, spectral shape 
is not changed by this operation ...



Recall: Computing pitch
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pattern simultaneously on both inputs; the time delay asso-
ciated with this correlation neuron is an integer multiple of
the period of the signal. In engineering terms, each correla-
tion neuron computes the running autocorrelation function of
a filtered version of the sound input for a particular time
delay.

In 1951, Licklider (2) proposed this neural autocorrelation
structure as a periodicity representation that could be imple-

mented plausibly with synaptic delays in neural circuitry.
Although no direct physiological evidence for these autocor-
relation structures has been discovered, Carr and Konishi
(10) have found direct evidence for cross-correlation struc-
tures for auditory localization in the midbrain ofthe barn owl;
these structures use axonal time delays to compute a place
code of interaural time delay.

Fig. 2 shows the utility of neural autocorrelation structures
in the perception of the pitch of a weighted harmonic sum of
sinusoids with frequencies (f, 2f, 3f, 4f, . . . ). Due to the
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FIG. 2. Analog representation of the signals in the delay lines
across the chip in response to a harmonic signal. Cochlear processing
is idealized (fully resolved harmonic components, perfect half-wave
rectification, no temporal smoothing). Peaks of activity in the
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Licklider model: Autocorrelate filtered waveforms.

Proc. Natl. Acad. Sci. USA 86 (1989) 9599

the chip, assuming that all sinusoids are in phase. The peaks
in all the delay lines coincide with the peaks of the sinusoid
of frequency f. Thus, even if the sinusoid of frequencyfhas
zero weight, the representation still encodes the frequencyf,
the perceived pitch ofthe sum. The outputs of the correlation
neurons reflect this representation; in addition, they are
invariant to the relative phase of the sinusoids.
To complete his model, Licklider (3) proposed a self-

organizing neural network that received connections from the
autocorrelation structures and that learned to associate firing
patterns with the perception of pitch. For our chip, we
designed a simple recognition algorithm suitable for the
perception of a single pitch. First, all correlation-neuron
outputs corresponding to a particular time delay are summed
across frequency channels to produce a single output value.
Correlation-neuron outputs are current pulses; a single wire
running vertically through the chip acts as a dendritic tree to
perform the summation for each time delay.

In this way, a two-dimensional representation of correla-
tion neurons reduces to a single vector; this vector is the map
of perceived pitch. The chip then integrates this vector
temporally, with an adjustable time constant, providing a
stable representation over many cycles of the input signal.
Finally, a global shunting-inhibition circuit (15) processes this
temporally integrated vector; this nonlinear circuit performs
a winner-take-all function, producing a more selective map of
perceived pitch. The chip time multiplexes this output map
on a single wire for display on an oscilloscope.

Chip Responses

To show the capabilities and limitations of the silicon model,
we recorded chip responses to a variety of classical pitch-
perception stimuli. In these experiments, we tuned the basi-
lar-membrane circuit to span about five octaves; lowpass
cutoff frequencies ranged from 300 Hz to 10,000 Hz. The
delay lines were tuned to provide about 3.3 ms of total delay;
with this tuning, the chip perceives pitches above 300 Hz.
Temporal smoothing by the recognition algorithm acted with
a time constant of tens of milliseconds.

Fig. 3A shows maps of a perceived-pitch period generated
by the chip in response to sine, triangle, and square waves at
various frequencies. As desired, chip response is invariant to
the harmonic content of the signal. The chip response shows
the first global peak of the autocorrelation representation; the
spatial variation in the delay-line timing weakens the strength
of subsequent peaks. In Fig. 3B, we recorded the map
position of the neuron with maximum signal energy for
square waves of different frequencies; the graph shows a
linear relationship between the input period of the waveform
and the pitch period predicted by the chip.
The stimuli in Fig. 4 illustrate the classical "missing

fundamental" aspect of pitch perception. Fig. 4A shows a
narrow-pulse waveform, whereas Fig. 4B shows the sum of
this narrow-pulse waveform and a synchronized sinusoid
with appropriate frequency, amplitude, and phase to cancel
exactly the fundamental frequency of the pulse waveform.
Human subjects perceive the pitch of both waveforms to be
identical (16); Fig. 4C shows identical maps from the chip in
response to both waveforms at various frequencies.
As in the biological system, the chip circuits that model the

cochlear periphery are in some aspects nonlinear and resyn-
thesize the fundamental frequency of the signal in Fig. 4B.
We have done several experiments to show that the effect of
distortion products is negligible. Decreasing the intensity of
the stimulus, within the operating range of the chip, does not
alter the response map; at lower intensities, spectral analysis
of cochlear-circuit outputs shows the strength of the funda-
mental component of the signal to be near the circuit's noise
floor. In addition, chip response does not change when a
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FIG. 3. (A) Maps of perceived-pitch period from the chip in
response to sine, triangle, and square waves. Column numbers
denote frequency in Hz. (B) Plot showing map position of the neuron
with maximum signal energy for square waves ofdifferent frequency;
ordinate axis is calibrated from data to indicate pitch period. Dots are
data points; solid line shows best linear fit to the data.

lowpass-filtered white-noise signal, with a cutoff frequency
above the fundamental of the stimulus, is added to the signal
shown in Fig. 4B (17).
A-sum of three sinusoids, with arithmetically related fre-

quencies fc - fi, -fc, and fc + fm, is a revealing pitch-
perception stimulus; an amplitude-modulated sinusoid, with
carrier frequencyfc and modulator frequencyfm, as shown in
Fig. 5A, produces this spectral pattern. If f, is equal to nfm,
where n is an integer, the three sinusoids form an integer-
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FIG. 4. (A) Narrow-pulse sound stimulus. (B) Narrow-pulse
sound stimulus with canceled fundamental frequency. (C) Maps of
perceived-pitch period from the chip in response to stimuli shown in
A and B at various frequencies; chip responds identically. Column
numbers denote frequency in Hz.

Neurobiology: Lazzaro and Mead
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Topics for today: Spectral processing

Analysis-synthesis: Model sound as a set 
of parameterized sound generators.

Psychophysics: Keeping sound object 
fusion as we modify the sound.

Time/Frequency Tradeoffs: Narrow 
filters are slow, fast filters are wide.

Phase Vocoding: The “Audio Image 
Processing” approach.



Observation:

If you can fit a sound to a 
model with slowly-varying 
parameters, 
time-and pitch modification 
can be done in 
parameter space.



Example: Plucked string





A1(t) A2(t)

A3(t) A4(t)



4 “tracks”

Final output

“Additive 
Synthesis”



Manage lifecycle of tracks:
Birth, evolution, death.



Some sound components are not 
well modelled by sinusoids.



Sine + filtered noise models ...

Sine + 
transients, 
Sine + 
residue, 
etc ...



Recall: If you can fit a sound to a 
model, time-and-pitch modification 
can be done in 
parameter space.



Commercial example: 
Celemony Melodyne resynthesis editor.



Commercial example: 
Synful Orchestra

“about 100 sinusoids 
per note, + noise models”



Concept: Common Fate

Changes to sine tracks 
and other components 
that belong to the 
same note should not 
“break” object percept.

Pitch changes (vibrato, bends).
Phase continuity (noise to sines).

Amplitude envelope relations.



Speech Separation - Dan Ellis 2005-11-28 -    /35

Auditory Scene Analysis

• Listeners organize sound mixtures
into discrete perceived sources
based on within-signal cues (audio + ...)

common 
onset 
+ continuity
harmonicity

spatial, modulation, ...
learned “schema”
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Example: Reynolds/McAdams Oboe

Adding vibrato to even partials 
makes them separate from the 
odd partials. (spectrum by Dan 
Ellis).

As shown

Reduced
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Recall: Fusing onset snippets

Derenyi, I. and R. B. Dannenberg. 1998. “Synthesizing Trumpet Performances.” In Proceedings of the International

Computer Music Conference. San Francisco: International Computer Music Association.

SYNTHESIZING TRUMPET PERFORMANCES

Istvan Derenyi and Roger B. Dannenberg

School of Computer Science, Carnegie Mellon University

Pittsburgh, PA 15213, USA

{derenyi, rbd}@cs.cmu.edu

Abstract: This paper presents our latest results in synthesizing high quality trumpet

performances. Our approach identifies the continuous control over the sound as a fundamental

element in the synthesis process. We developed our synthesis model as a cooperative system of

two sub-models, continuous control parameters providing the interface between them. The two

sub-parts are the instrument model, which takes sources of continuous control signals as input

and produces an audio output, and the performance model, which takes some symbolic

representation of music as an input, and produces control signals.

1. Introduction

Our goal is to develop a synthesis model capable of rendering highly realistic trumpet performances. Our

impression is that current synthesis techniques fail to achieve that goal for a couple of reasons. The trumpet

(among other instruments) can be characterized by the fact that the player exercises continuous control over the

course of notes and phrases. This results in a continuous evolution of spectrum as a function of that control. It

follows naturally that template-based synthesis is not able to synthesize highly realistic performances of this type

of instrument. (By template based synthesis we mean storing and combining individual recorded notes. Most of

the current commercially available synthesis systems are sample based and belong to this category.) A successful

synthesis technique has to be able to render sound based on continuous control.

Also, the specific realization of such a control depends strongly on the musical context in which the actual note

is embedded. As an example, we can show that the amplitude envelope shape of a single note is dependent upon

the pitch contour of the containing phrase. (Dannenberg, Pellerin, and Derenyi 1998) From this, it follows that

synthesis of single notes (which is the practice followed by most synthesis research) is not adequate for our

purposes either. We believe that a more holistic integration of control and synthesis is necessary for realistic

synthesis and to create appropriate control functions for the synthesis.

As we pointed out, the continuous control signals have to play a key role in the synthesis process. The idea of

control signals is quite common and its use can be identified in most of the synthesis techniques. However, the

problem of how to produce appropriate control signals remains. There are two “directions” in which we would

like to derive the control signals. During testing, we would like to measure “reference” control signals from real

performances and compare them to synthetic control signals. FM synthesis is a good example how problematic

this issue can be. During synthesis, as an ultimate goal, we would like to derive our control signals from

symbolic data. If those control signals are closely tied to musical concepts such as amplitude or pitch, then rules

to produce those control signals can be derived by hand or by machine learning techniques. However, if the

control signals represent peculiarities of the synthesis technique (such as with different physical modeling

synthesis techniques, then control signals are more difficult to derive. We propose a new technique, which

addresses these requirements.

The next section gives an overview of this new technique. Section 3 describes related work. We conducted

experiments to test some of the assumptions of our technique, and these are described in Section 4. Sections 5

and 6 describe the instrument model and the performance model. Future work is described in Section 7, which is

followed by a summary and conclusions.

2. The Combined SIS Model

Our synthesis model takes a symbolic score as input and produces a digital audio performance as output. As we

described earlier, continuous control parameters play a key role as an intermediate representation in the synthesis

process. The overall model is built upon the performance model, which generates control signals from the

symbolic score, and the instrument model, which produces the audio output based on the control signals.

Each scale note has a trumpet onset sample.
Measure the amplitude and phases of trumpet 
harmonics at the end of onset sample.

To begin the sustained sound, a waveform 
is calculated whose phases and amplitudes 
match the onset.
Over 50 ms, interpolate to the desired 
amplitude spectrum of the sustained sound.



Sparrow Bird Call Play



Time/Frequency Tradeoffs

Acoustic Bass Pluck

Fast linear filters are wide.
Narrow linear filters are slow.

Accurate partial frequencies.

Poorly-defined transient time.

Playing



Time/Frequency Reassignment

Dedicate phase of spectrum to adjust 
center of mass of each “grid point”.

Acoustic Bass Pluck

Data from Kelley Fitz and Sean Fulop

Not a free 
lunch.

No phase 
information 
for the 
reassigned 
spectrum.



+ + * + +  

+ + * * I  

+ + + +  

Flgure 2: 

sentence 'Two plus  seven is less than  ten,"  spoken by a  male  speaker. 

Wide-band  gectrogram (a).  extracted  objects (b), and masked spectrogram (c), for the 

Flgure 1: 

Results  after  different stages of processing for  the 

nonsense word >%oyt,"  spoken by afemale  speaker. 

(See test) 

0. 4000. 

Flgure 3: 

Illustrations of the procedure  to  obtain  a  smoothed  spectrum for the vowel 

recognition  experiment. (See text) 

51. 1. 4 

2754 ICASSP 86, TOKYO 

+ + * + +  

+ + * * I  

+ + + +  

Flgure 2: 

sentence 'Two plus  seven is less than  ten,"  spoken by a  male  speaker. 

Wide-band  gectrogram (a).  extracted  objects (b), and masked spectrogram (c), for the 

Flgure 1: 

Results  after  different stages of processing for  the 

nonsense word >%oyt,"  spoken by afemale  speaker. 

(See test) 
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Illustrations of the procedure  to  obtain  a  smoothed  spectrum for the vowel 
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Scale-Space Approach

Narrow filters Fast filters

Spoken word “boyt” 
processed by two 

filterbanks.

Data from Hong Leung and Victor Zue

Accurate pitch harmonics. Good glottal pulse timing.



Multi-Level Maps Derive motion maps 
from spectrogram.Data from Reyes-

Gomez, Jojic, and Ellis

each !w vector as a row, is:





0 0 0 0 1
0 0 0 .25 .75
0 0 0 .75 .25
0 0 0 1 0
0 0 .25 .75 0
. . . . .

.75 .25 0 0 0
1 0 0 0 0





(3)

The length NW of the transformation vectors defines

the supporting coefficients from the previous frame
!X [k−nW ,k+nW ]

t−1 (where nW = (NW − 1)/2) that can “ex-
plain” Xk

t .

b) Transformation Mapa) Signal

Green:
Identity transform

Yellow/Orange: 
Upward motion
(darker is steeper)

Blue: 
Downward motion
(darker is steeper)

1

2

3

Figure 4: Example transformation map showing corre-

sponding points on original signal.
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Figure 5: Graphical representation of the two-layer source-

filter transformation model.

For harmonic signals in particular, we have found that a

model using the above set of !w vectors with parameters

NW = 5, NP = 9 and NC = 5 (which corresponds to
a model with a transformation space of 13 different matri-

ces T) is very successful at capturing the self-similarity and

dynamics of the harmonic structure.

The transformations set could, of course, be learned, but in

view of the results we have obtained with this predefined

set, we defer the learning of the set to future work. The

results presented in this paper are obtained using the fixed

set of transformations described by matrix 3.

The clique “local-likelihood” potential between the time-

frequency binXk
t , its relevant neighbors in frame t, its rel-

evant neighbors in frame t− 1, and its transformation node

T k
t has the following form:

ψ
(

!X [k−nC ,k+nC ]
t , !X [k−nP ,k+nP ]

t−1 , T k
t

)
=

N
(

!X [k−nC ,k+nC ]
t ; !T k

t
!X [k−nP ,k+nP ]

t−1 ,Σ[k−nC ,k+nC ]
)

(4)

The diagonal matrix Σ[k−nC ,k+nC ], which is learned, has

different values for each frequency band to account for

the variability of noise across frequency bands. For the

transformation cliques, the horizontal and vertical transi-

tion potentials ψhor(T k
t , T k

t−1) and ψver(T k
t , T k−1

t ), are
represented by transition matrices.

For observed nodes X , inference consists in finding

probabilities for each transformation index at each time-

frequency bin. Exact inference is intractable and is ap-

proximated using Loopy Belief Propagation [7, 8] (Yedidia

2001,Weiss 2001) Appendix A gives a quick review of

the loopy belief message passing rules, and Appendix B

presents the specific update rules for this case.

The transformation map, a graphical representation of the

expected transformation node across time-frequency, pro-

vides an appealing description of the harmonics’ dynamics

as can be observed in figure 4. In these panels, the links

between three specific time-frequency bins and their corre-

sponding transformations on the map are highlighted. Bin

1 is described by a steep downward transformation, while

bin 3 also has a downward motion but is described by a less

steep transformation, consistent with the dynamics visible

in the spectrogram. Bin 2, on other hand, is described by

a steep upwards transformation. These maps tend to be

robust to noise (see fig 7), making them a valuable repre-

sentation in their own right.

3 Inferring Missing Data

If a certain region of cells in the spectrogram are missing,

like in the case of corrupted data, the corresponding nodes

in the model become hidden. This is illustrated in figure 3,

where a rectangular region in the center has been removed

and tagged as missing. Inference of the missing values is

performed again using belief propagation, the update equa-

tions are more complex since there is the need to deal with

continuous messages, (Appendix C). The posteriors of the

hidden continuous nodes are represented using Gaussian

distributions, the missing sections on figure 3 part b), are

filled in with the means of their inferred posteriors, figure

3 part c), and d). The transformation node posteriors for

the missing region are also estimated, in the early stages on

the “fill-in” procedure the transformation belief from the

“missing” nodes are set to uniform so that the transforma-

tion posterior is driven only by the reliable observed neigh-

bors, once the missing values have been filled in with some

data, we enable the messages coming from those nodes.
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sion of the marked NP = 5 patch in the previous frame.
This relationship can be described using the matrix shown.
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Figure 2: a) Graphical model b) Graphical simplification.

formation field of the speech harmonics, and show how this

can be exploited to interpolate missing observations. Then,

we introduce the two-layer model that separately models

the deformation fields for harmonic and formant resonance

components, and show that such a separation is necessary

to accurately describe speech signals through examples of

the missing data scenario with one and two layers. Then we

will present the complete model including the two defor-

mation fields and the “sharp” states. This model, with only

a few states and both deformation fields, can accurately re-

construct the signal. This paper fully describes the oper-

ation and implementation of this complete model, which

was only described as future work in [6](Reyes-Gomez

2004).

Finally, we briefly describe a range of existing applications

including semi-supervised source separation, and discuss

the model’s possible application to unsupervised source

separation.

2 Spectral Deformation Model

Figure 1 shows a narrow band spectrogram representation

of a speech signal, where each column depicts the en-

ergy content across frequency in a short-time window, or

time-frame. The value in each cell is actually the log-

magnitude of the short-time Fourier transform; in decibels,

xk
t = 20log(abs(

∑NF−1
τ=0 w[τ ]x[τ − t · H]e−j2πτk/NF )),

where t is the time-frame index, k indexes the frequency
bands, NF is the size of the discrete Fourier transform,

H is the hop between successive time-frames, w[τ ] is the
NF -point short-time window, and x[τ ] is the original time-
domain signal. We use 32 ms windows with 16 ms hops.

Using the subscript C to designate current and P to in-

dicate previous, the model predicts a patch of NC time-

frequency bins centered at the kth frequency bin of frame t
as a “transformation” of a patch of NP bins around the kth

bin of frame t− 1, i.e.

"X [k−nC ,k+nC ]
t ≈ "T k

t · "X [k−nP ,k+nP ]
t−1 (1)

where nC = (NC − 1)/2, nP = (NP − 1)/2, and T k
t is

the particularNC×NP transformation matrix employed at

that point on the time-frequency plane. We use overlapping

patches to enforce transformation consistency, [5](Jojic

2003).

Figure 1 shows an example with NC = 3 and NP = 5 to
illustrate the intuition behind this approach. The selected

patch in frame t can be seen as a close replica of an up-
ward shift of part of the patch highlighted in frame t − 1.
This “upward” relationship can be captured by a transfor-

mation matrix such as the one shown in the figure. The

patch in frame t − 1 is larger than the patch in frame t
to permit both upward and downward motions. The gen-

erative graphical model for a single layer is depicted in

figure 2. Nodes X = {X1
1 , X2

1 , ..., Xk
t , ..., XK

T } repre-
sent all the time-frequency bins in the spectrogram. For

now, we consider the continuous nodes X as observed, al-

though below we will allow some of them to be hidden

when analyzing the missing data scenario. Discrete nodes

T = {T 1
1 , T 2

1 , ..., T k
t , ..., TK

T } index the set of transfor-
mation matrices used to model the dynamics of the signal.

Each NC ×NP transformation matrix "T is of the form:




"w 0 0
0 "w 0
0 0 "w



 (2)

i.e. each of the NC cells at time t predicted by this matrix
is based on the same transformation of cells from t − 1,
translated to retain the same relative relationship. Here,

NC = 3 and "w is a row vector with lengthNW = NP − 2;
using "w = (0 0 1) yields the transformation matrix shown
in figure 1. To ensure symmetry along the frequency axis,

we constrain NC , NP and NW to be odd. The complete

set of "w vectors include upward/downward shifts by whole
bins as well as fractional shifts. An example set, containing

a) b) c) d)

Figure 3: Missing data interpolation example a) Original, b) Incomplete, c) After 10 iterations, d) After 30.

a)Missing Sections b) Fill-in; one layer c) Fill-in; two layers

Figure 6: (a) Spectrogram with deleted (missing) regions. (b) Filling in using a single-layer transformation model. (c)

Results from the two-layer model.

4 Two Layer Source-Filter Transformations

Many sound sources, including voiced speech, can be

successfully regarded as the convolution of a broad-band

source excitation, such as the pseudo-periodic glottal flow,

and a time-varying resonant filter, such as the vocal tract,

that ‘colors’ the excitation to produce speech sounds or

other distinctions. When the excitation has a spectrum con-

sisting of well-defined harmonics, the overall spectrum is in

essence the resonant frequency response sampled at the fre-

quencies of the harmonics, since convolution of the source

with the filter in the time domain corresponds to multiply-

ing their spectra in the Fourier domain, or adding in the log-

spectral domain. Hence, we model the log-spectraX as the

sum of variables F and H , which explicitly model the for-
mants and the harmonics of the speech signal. The source-

filter transformation model is based on two additive layers

of the deformation model described above, as illustrated in

figure 5. Variables F andH in the model are hidden, while,

as before,X can be observed or hidden. The symmetry be-

tween the two layers is broken by using different parame-

ters in each, chosen to suit the particular dynamics of each

component. We use transformations with a larger support

in the formant layer (NW = 9) compared to the harmon-
ics layer (NW = 5). Since all harmonics tend to move
in the same direction, we enforce smoother transformation

maps on the harmonics layer by using potential transition

matrices with higher self-loop probabilities. An example

of the transformation map for the formant layer is shown

in figure 7, which also illustrates how these maps can re-

main relatively invariant to high levels of signal corruption;

belief propagation searches for a consistent dynamic struc-

ture within the signal, and since noise is less likely to have a

well-organized structure, it is properties of the speech com-

ponent that are extracted. Inference in this model is more

complex, but the actual form of the continuous messages

is essentially the same as in the one layer case (Appendix

C), with the addition of the potential function relating the

signal Xk
t with its transformation components Hk

t and F k
t

at each time-frequency bin:

ψ(Xk
t ,Hk

t , F k
t ) = N (Xk

t ;Hk
t + F k

t ,σk) (5)

The first row of figure 10 shows the decomposition of a

speech signal into harmonics and formants components,

illustrated as the means of the posteriors of the continu-

ous hidden variables in each layer. The decomposition is

not perfect, since we separate the components in terms of

differences in dynamics; this criteria becomes insufficient

when both layers have similar motion. However, separa-

tion improves modeling precisely when each component

has a different motion, and when the motions coincide, it

is not really important in which layer the source is actu-

ally captured. Figure 6 a) shows the first spectrogram from

figure 10 with deleted regions; notice that the two layers

have distinctly different motions. In b) the regions have

been filled via inference in a single-layer model; Notice

that since the formant motion does not follow the harmon-

ics, the formants are not captured in the reconstruction. In

c) the two layers are first decomposed and then each layer

is filled in; the figure shows the addition of the filled-in
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Audio Image Processing
“Audio Photoshop”

Time-Frequency Processing

• We can process in the frequency domain

• get into frequency domain (analysis):

! (short-time) FFT’s

! filter banks

• processing (amplitude and/or phase)

• back into time domain (synthesis):

SMS044 – From Zolzer Text Lp3, 2005, calendar week 6/7 – page 1

Phase Vocoder: Analysis, Transformation, Synthesis
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Convert audio 
into a “spectral 

photo”.
Transform “photo” to be “better” 
(time-shift, pitch-shift, etc).
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SMS044 – From Zolzer Text Lp3, 2005, calendar week 6/7 – page 2

To recreate audio, 
“invert” photo-making 

process.
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Example: Phase Vocoding

Time-Frequency Processing

• We can process in the frequency domain

• get into frequency domain (analysis):

! (short-time) FFT’s

! filter banks

• processing (amplitude and/or phase)

• back into time domain (synthesis):
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Advantages
No model to build: 
easier to design, 
faster to run.
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Time-Frequency Processing
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Disadvantages
Without a model, 
harder to maintain 
“common fate” and 
avoid artifacts.

Original
2X slower
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