Music 209
Advanced Topics in Computer Music

Lecture 6 - Real-Time Control

2006-2-23

Professor David Wessel (with John Lazzaro)
(cnmat.berkeley.edu/~wessel, www.cs.berkeley.edu/~lazzaro)

www.cs .berkeley.edu/~lazzaro/class/music209

Q Music 209 L6: Real-Time Control UC Regents Spring 2006 © UCB

Today, we ShOW Select candidate candidates
software examples samples fromdb | $¢] #2 #3

of real-time control e
in concatenative = F e

SynihOSiS. = =R =" =

Any good
matches? Y

Modify a Choose best
candidate to be match
good enough -

2l

#3(mod) T #2

Do the splice Do the splice

#3(mod) \I, #*
e

F Nl

+

Topics for today ...

élé Systems architecture

Structured Audio tutorial

Example: A 185 MB piano

Concatenative coding techniques

usic 209 L6: Real-Time Control UC Regents Spring 2006 © UCB

Samples

Audio Qut

Dave Smith, NY AES
Convention, 1981

MIDI : A network protocol for
musical instrument control

T ——

Unidirectional serial link - 31,250 Hz

Sends
commands
for

key press, \.

key release,
knobs.

power QY AC USB stereo/mono direct phanthom
swifth powex inpuf port monitoring selector power swifc

MIDI: Commands sent on a wire

Command sent on one 128 notes,
of 16 voice channels 60 = Middle C

Channel Voice Messages

1100ccece OpppPPPPP

send 7-bit
values. Ex:
controller 7

Program change: 7-bit number is channel
maps channel to a timbre. volume.

Music 209 L6: Real-Time Control UC Regents Spring 2006 © UCB

1101ccecec Dfaaaaaa

PWwheel (Pitch Wheel) 1110ccce f0xxxxxxx OVYyyyyy

8 818 Music 209 Projects

| 4 B | |1‘j}| | & | http:f,fww.cs.herkeley.edufwlazzarﬂa’claﬁfmusicEﬂQ.-’prc:-jectf.,.’index.html Q “h.* Google

Key milestones for the project appear below,

Pue Next Weds!

X short (one or two page) description of the project. PDF or plain text format is fine -- please, no
Project Aoy files. Collaborative projects should include information on how the work will be split between
te@m members. Email this abstract to the instructors (wessel [at] cnmat [dot] berkeley [dot] edu,
~— azzaro [at] eecs [dot] berkeley [dot] edu).

You are free to propose a project topic of your own creation. Alternatively, you may choose one of the project ideas below (click on
the link for a complete description).

¢ Drum-related Projects
Creating Electronic Drum Samples from Acoustic Drum Samples
Tools for Automating Drum Track Arrangements
Timbre-Space Browsers for Drum Loops and Individual Hits
Realistic Retuning of Drum Sounds
Real-Time Performance by Retiming Drum Loops
Fusing Multiple Drum Hits into a Single Percept
¢ Wind Instrument Projects
o Playing Horns from a Keyboard with Improved Articulation
o Automatic Hom Phase Selection to Match a Track
o Real-time Timbre Selection with a Wind Controller
e Computer Systems Projects
o CoreSample: Kemnel Database Services for Concatenative Svnthesis
¢ Vocal Projects
o Synthesis, Analysis, and Algorithmic Composition of Glossolalia Vocals
o Lyric Design for Phrase-Based Vocal Synthesis

Structured Audio
SAOL (pronounced ”sail”)

sonec Jtc 1sc 29we 11 N2503-sech

Date: 1898-3-10
ISO/IEC FDIS 14496-3 secS

ISOMEC JTC 1/5C 29WG11 \

socralanall Maremi Hiross \

Standardized

Information technology - Coding of audio-visual objects Ia n g u a g e
Part 3: Audio

rctons: Struotured audo Many
Eric Scheirer (MIT Media Lab) implementations ...

B0 MPEG 4 Structured Audio -- Developer Tools
|_ 4] [ﬂH | (v | ﬁhttp:,.f,f'.-.-u-.-w.cﬂ.trerkeley.edu,.fulazzarws.a.findex.html - Q- Coogle

mp4-sa

MPEG-4 Structured Audio: Developer Tools

By John Lazzaro and John Wawrzynek, CS Division, UC Berkeley.

MPEG-4 Structured Audio The MP4-SA Book Links

MPEG-4 Structured Audio (MP4-5A) is an ISO/IEC We wrote an online book to show how to Introductory
standard (edited by Eric Scheirer) that specifies sound not create audio content for MPEG 4 Stuctured Example
as sampled data, but as a computer program that generates Audio.

COMPILING MPEG 4 STRUCTURED AUDIO INTO C
sfront
John Lazzaro and Jokn Wawrzvnek

Download the latest version of sfront, a

(% Division translator that converts MP4-SA files into

. . efficient C programs that generate audio for
UL Berkeley rendering, interactive and network
Berkeley, CA, 94720

applications.
{lazzaro, johnw } & cs.berkeley.edu

Sfront is written by John Lazzaro and John
. . Wawrzynek, and is freely redistributable under
ABSTRALT the terms of the GNU Public License.

_ i~':1:|.'|:.'.uu:-:.:1 Audio {54 .i:-': arl !':-’JPE.L]' 4 Audio Mlan:ia:d The sfront reference manual describes how to
for algorithmic sound encoding , using the programming lan- install and use the program. Developers can
guape SAOQL. The paper describes a 5A decoder, sfront, that learn how to add control and audio drivers to
translates a SAOQL program into a C program, which is then sfront, as well as learn about the internals of
compiled and executed to create audio. Performance data sfront and the C programs it creates.

shows a 7.0x 1o 20.4x specdup compared to the SA refer-

ence MPEG decoder.

Where Each MIVI A SAOL "Instr”

MIDI NoteOn

Wlee‘l's lau"ches ANCW 7 cir sine @ch, @ preset{

instr bound to
the program

NoteQff number.

SAOL instance of the
// code gnesﬁere

schedules
instance
o
termina

Sets program
number for a

\

, MIDI
Instance passed in program

NoteOn number and pymber
velotity.

| NoteOn (start a note)

1100ccec\ OppPPPPRPP

Benefits

instr sine (pitch, vel) preset @ {

The language run-

time does real-time // code goes here
scheduling for you.

All you do is supply

behavior code.

No extra code for
polyphony.

The language makes
parallelism explicit:

SAOL code is multi-
core ready.

Execution model

Birth

!\lo
N\

Time (3) Cycle

0.990000 k-cyecle
a-cycle
a-cycle
a-cycle

a-cycle

0.990025
0.990050
0.990075

0.999925 a-cycle

a-cycle
a-cycle
a-cycle
a-cycle

1.000025
1.000050
1.000075

1.009975 a-cycle

Pass

0.999950 a-cycle
~3’”ﬁﬁk~iﬂf§>
1.000000 k-cycl i

N\

010000 k-cycle
a-cycle
a-cycle
a-cycle

a-cycle

1.010025
1.010050
1.010075

019975 a-cycle

¥.020000 k-cycle
a-cycle
a-cycle
a-cycle

a-cycle

1.020025
1.020050
1.020075

129975 a-cycle

k-pasg =--
a-pass
A=-pass
A=-pass
a-pass

A=-pasgs =-

k-pasg =--
A=-pass
A=-pass
a-pass
a-pass

A=-pASS ==

|
I
| 2
|
|

|
|
| 3
|
|

global {

srate 44100; Global block sets audio and

krate 1050;

}

control sample rates.

instr sine (pitch, vel) preset 0 {

// Variable declarations
Benefit: Keeps code for all

timescales in one place.

// Code that runs once,

// 1nstantiation.

at

I-i':%TF
‘spoken words” I1-FAS

// Code that runs at the start
// of each control cycle.

“phonemes”

E-FEATE
E-FASS

// Code that runs at the audio
// sample rate.

‘Waveform”

A-RATE
A-PASS

Example 1: One Note Fits All ...

Plays one piano sample across entire keyboard.
Each key plays same pitch.

— damples read from disk and

{ locked into RAM during startup.

srate 44100; . .
krate 1050 Variable nawe used in

'~~~ SAOL program code.

table /r1ght_060_mf(sample, -1,
"Q60_C3KM56_M.wav");

A Piano sample file on disk.

Q Music 209 L6: Real-Time Control

Instr declaration + i-rate code

instr piano_proto (pitch, vel)m_{\
How global {} variables are made visible in an instr.
\imports exports tablel\right_060_mf;

[ivar] rel_time, full_scale, volume;
ksig W Asslgnmems to a variable
asig 1; happen at the rate indicated by

these keywords (ivar, ksig, asig).

// %k 3k 3k 3k 3k 3k 3k %k 5k 3k 3k 3k %k 3k >k 5k 3k >k 3k %k >k %k

// computed during i-pass "vel” is the velocity

that created the
rel_time = 0.250; instance.
full_scale = 0.25;

volume = full_scale*(vel/127); // NoteOn velocity
// scales volume

Music 209 L6: Real-Time Control UC Regents Spring 2006 © UCB

Instr k-rate code

A ‘standard name” (built-in variable).
/ Fexkrkrikakrkrkkxkxk - na’ agsed is 1 if instance is slated

computed during k-pass

// Add release time when NoteOff occurs

/ We postpone termination so
that we can fade note out.

extend() is a SAOL command.

extend(rel_time);

1f (lrel &&
(k > f:len(right_060_mf) - rel_time*s_rate - 2*(s_rate/k_rate)))

{— s the sample ready to run oyt?

turnoff; // Force NoteOff before we run out of samples

} < If s0, we “force” a NoteQff by using
k = k + (s_r'ate/k_rate),‘rhe tu r'nO'F'FCOWIWIa"d. Nex{'
kpass, released will be 1,__

Music 209 L6: Real-Time Control gents Spring 2006 © UCB

Instr a-rate code

// %k 3K 3k 3k 3k %k 3k 3k 3k 3k 3k 3k 5k 3k 3k 3k 3k >k %k 3k >k %k

Demo // computed during a-pass
// 3K 3k 3k 3k 3k 3k 5k 3k 3k 3k 5k 3k 3k 3k >k 3k 3k 5k >k k kK k

1f (lrel) //|Attack and sustain portion of note

tput
outpu / NoteOn: Seale by velocity constant

Sum {

audio \ > outputl ' tableread(right_060_mf, 1));

sample }

value else // Release envelope after NoteOff |\
onto the { NoteOff: Scale by fadeout enyelope.

nsirs alineCvolune, rel time, O}
output
bus’. } N .
tableread(..., i) Interpolated
read of the i*th sample of the table.

Music 209 L6: Real-Time Control UC Regents Spring 2006 © UCB

Sample Databases

Sample database But how do we

conveniently access
global { 100s of samples in a
SAOL program?
table left_024_mf

(sample, -1, "024_COKM56_M.wav");

table right_024_mf
(sample, -1, "024_COKM56_M.wav");

table left_031_mf
(sample, -1, "031_GOKM56_M.wav");

table right_031_mf
(sample, -1, "031_GOKM56_M.wav");

[...]

Tablemaps

instr full (pitch, vel) preset 0 {

1mports exports table low;
1mports exports table mid;

imports exports table hi;

0 1 .

«—
tablemap set(low, mid, high); lndex values

output(tableread(set[1]|, 1));

, ™\ Reads from
“mid” table

