CS 250 VLSI Design Lecture 12 – CMOS Imagers

2012-10-2

John Wawrzynek

Jonathan Bachrach

Krste Asanović

Today's lecture by John Lazzaro

TA: Rimas Avizienis

www-inst.eecs.berkeley.edu/~cs250/

CMOS imagers sensors are everywhere

Humans on earth: 6.9B

Year (F == forcast)

	2007	2008	2009	2010	2011	2012	2013	2014	2015
CCD sensors	235	215	195	185	180	175	165	149	138
CMOS sensors	971	1 194	1 338	1 501	1 704	1 939	2 235	2 520	2 893

Source: www.icinsights.com

iPhone 5 4.5 x 3.4 mm sensor.

÷,

AZADEH

Canon 5D Mark III 36 x 24 mm sensor.

FAUSTO

RIGHT LANE BUSES TAXIS & RIGHT TURNS ONLY AT ALL TIME

Hill I

Six generations of iPhone camera

Cameras: 9% of the \$199 Bill of

	Apple iPhone 5 (Pricing as of Sept, 2012)					
Components / Hardware Elements	iPhone 5 Hardware Comments	16GB3	32GB4	64GB5		
Camera(s)	8MP + 1.2MP	\$18.00	\$18.00	\$18.00		

Materials (BOM).

Sony rear camera module

Omnivision camera

2006: One year before iPhone

Moto predicted 3M shipped Q4 2006. Source: www.elecdesign.com

Typical camera module for the Micron MT9M111

> Fixed-focus lens. No "optical" zoom.

> > 0.27 inches deep.

0.37 inch x 0.37 inch square

Source: www.asia-optical.com.tw

Micron MT9M111* - 1.3 MPixel CMOS Imager

1280 x 1024 pixels.

Each pixel is R, G, or B. So, 2/3 of RGB image data is interpolated.

* Photo a close relative (MT9M011) CS 250 L12: CMOS Imagers

UC Regents Fall 2012 © UCB

Camera interface to the outside world

Top View (Ball Down)

Functional Block Diagram

Focusing the Camera

Focus: The Basics

Images are inverted on their way to the retina at the back of the eye

Variable focus

Fixed focus camera module.

Fixed-focus: What do we give up?

Camera is only in focus for objects within the depth of field: other objects are blurry.

Best we can do with a fixed-focus camera.

Auto-Focus Module in iPhone 5

"Voice Coil" solenoid moves lens element.

Works like a loudspeaker ...

Coming soon: MEMS auto-focus

MEMS Autofocus Module

Silicon Photosensitivity

Zooming in on the array ...

One Pixel Pixel Photosensor

Each sensor is a photodiode

Top view:

UC Regents Fall 2012 © UCB

Photodiode: Like a normal diode ...

Photodiodes see a gray world ...

Data shown is for a standard 0.35µ CMOS logic process.

Quantum efficiency can be improved by modifying the process.

Source: "A 640 512 CMOS Image Sensor with Ultrawide Dynamic Range Floating-Point Pixel-Level ADC", David X. D. Yang, Abbas El Gamal, Boyd Fowler, and Hui Tian, JSSC, Dec 1999.

CS 250 L12: CMOS Imagers

UC Regents Fall 2012 © UCB

UC Regents Fall 2012 © UCB

Color filters deposited on pixel array

G	R	G	R	G	R	G	
В	G	В	G	В	G	В	
G	R	G	R	G	R	G	
В	G	В	G	В	G	В	
G	R	G	R	G	R	G	
В	G	В	G	В	G	В	

"RGB Bayer" Why?

Source: Eric Fossum, IEEE Micro, and Micron Data Sheets

Human cone array, imaged through the eye.

Source: Hofer et al, J. Neuroscience, 25(42):9669-9679

....cron MT9M111 spectral response ...

Note IR response. This is why camera module needs an IR filter.

Array border cells aid calibration ...

(1315, 1047)

Black pixels have photodiodes covered by metal.

CS 250 L12: CMOS Imagers

UC Regents Fall 2012 © UCB
Microlenses

Recall: Side view of a photodiode ...

If there was a way to sense the photons that bounce off the metal, low-light photos would look better.

UC Regents Fall 2012 © UCB

"Compound eyes" of an insect - "microlenses"

Pixel Scaling

UC Regents Fall 2012 © UCB

The MegaPixel race ...

CS 250 L12: CMOS Imagers

Resolution limit of lens technology ...

Why more pixels are not always better

5µm pixels match the optical resolving power of practical camera optical systems (1997, Fossum). 2012 figure may be smaller.

Shrinking pixels beyond limit does not add resolution.

Larger die sizes are the path to higher resolution.

Sensor size: Pro camera vs iPhone 5

35mm full-	frame Cano	on 5D Mark III 36 x 24 mm sensor.
	APS-H	
		APS-C

CS 250 L12: CMOS Imagers

Megapixels: Benefits other than resolution

Small pixels supersample color space. Color interpolation improves.

Process scaling helps imager arrays in another way ...

Recall: Photodiode design ...

Readout Circuits

UC Regents Fall 2012 © UCB

Three-Transistor Active Pixel Cell

Step 1: Fill C_d, and sense column current.

Edge circuitry samples current **I** (Q_f) for later use.

Opening the electronic shutter ...

Step 2: "Electronic shutter" opens, photodiode empties C_d.

Too much JQd(t), and we empty bucket before shutter closes.

Not enough $\int Q_d(t)$, and we capture temporal noise.

Close shutter, read pixel value ...

Step 3: Sense how empty C_d has become.

Readout: Column-parallel ADCs ...

Figure 7. Basic architecture of a column-parallel, single-slope analog-to-digital converter.

CS 250 L12: CMOS Imagers

UC Regents Fall 2012 © UCB

Camera Shutter: Space-Time Sampling

Solution: Add "analog memory" ...

Does not come for free.

Reduces fill factor, adds edge circuit complexity.

Mechanical shutters are more popular.

Backside illuminated global shutter CMOS image sensors

Guy Meynants, Jan Bogaerts, Xinyang Wang, Guido Vanhorebeek CMOSIS nv, Coveliersstraat 15, 2600 Antwerp, Belgium

CS 250 L12: CMOS Imagers

Fabrication Technology

1.75 effective transistors per pixel.

Microlens

Planarizing lens buffer layer

8.0 µm

Color filter

Photocathode region

-

Transfer transistor

and the second

GIIIOWOIK

Back-Side Illumination

transfer gate

N-photocathode

P-type passivation implant

isolation

P-well

2.0 effective transistors per pixel.

Si carrier wafer

thin Si image sensor substrate

Wafer-Scale Packaging

UC Regents Fall 2012 © UCB

UC Regents Fall 2012 © UCB

. . . ______ _____

evolution of the mobile phone camera

Design shown is "dominant paradigm".

Evolves with every product generation.

X Some research projects and start-ups focus on the evolution.

Others shoot for "revolutionary jump"

CS 250 L12: CMOS Imagers

