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INTRODUCTION

Two general types of inhibition mediate activity in neural systems: subtractive
inhibition, which sets a zero level for the computation, and multiplicative (nonlin-
ear) inhibition, which regulates the gain of the computation. We report a physical
realization of general nonlinear inhibition in its extreme form, known as winner-
take-all.

We have designed and fabricated a series of compact, completely functional
CMOS integrated circuits that realize the winner-take-all function, using the full
analog nature of the medium. This circuit has been used successfully as a component
in several VLSI sensory systems, that perform auditory localization (Lazzaro and
Mead, in press) and visual stereopsis (Mahowald and Delbruck, 1988). Winner-
take-all circuits with over 170 inputs function correctly in these sensory systems.

We have also modified this global winner-take-all circuit, realizing a circuit
that computes local nonlinear inhibition. The circuit allows multiple winners in
the network, and is well suited for use in systems that represent a feature space
topographically and that process several features in parallel. We have designed,
fabricated, and tested a CMOS integrated circuit that computes locally the winner-
take-all function of spatially ordered input.

THE WINNER-TAKE-ALL CIRCUIT

Figure 1 is a schematic diagram of the winner-take-all circuit. A single wire,
associated with the potential Vc, computes the inhibition for the entire circuit; for
an n neuron circuit, this wire is O(n) long. To compute the global inhibition,
each neuron k contributes a current onto this common wire, using transistor T2k .
To apply this global inhibition locally, each neuron responds to the common wire
voltage Vc, using transistor T1k . This computation is continuous in time; no clocks
are used. The circuit exhibits no hysteresis, and operates with a time constant
related to the size of the largest input. The output representation of the circuit is
not binary; the winning output encodes the logarithm of its associated input.
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Figure 1 Schematic diagram of the winner-take-all circuit. Each neuron receives a unidirec-
tional current input Ik ; the output voltages V1 . . . Vn represent the result of the winner-take-all
computation. If Ik = max(I1 . . . In), then Vk is a logarithmic function of Ik; if Ij " Ik, then
Vj ≈ 0.

A static and dynamic analysis of the two-neuron circuit illustrates these system
properties. Figure 2 shows a schematic diagram of a two-neuron winner-take-all
circuit. To understand the behavior of the circuit, we first consider the input
condition I1 = I2 ≡ Im. Transistors T11 and T12 have identical potentials at gate
and source, and are both sinking Im; thus, the drain potentials V1 and V2 must
be equal. Transistors T21 and T22 have identical source, drain, and gate potentials,
and therefore must sink the identical current Ic1 = Ic2 = Ic/2. In the subthreshold
region of operation, the equation Im = Io exp(Vc/Vo) describes transistors T11 and
T12 , where Io is a fabrication parameter, and Vo = kT/qκ. Likewise, the equation
Ic/2 = Io exp((Vm − Vc)/Vo), where Vm ≡ V1 = V2, describes transistors T21 and
T22 . Solving for Vm(Im, Ic) yields

Vm = Vo ln(
Im

Io
) + Vo ln(

Ic

2Io
). (1)

Thus, for equal input currents, the circuit produces equal output voltages; this
behavior is desirable for a winner-take-all circuit. In addition, the output voltage
Vm logarithmically encodes the magnitude of the input current Im.
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Figure 2 Schematic diagram of a two-neuron winner-take-all circuit.

The input condition I1 = Im+δi, I2 = Im illustrates the inhibitory action of the
circuit. Transistor T11 must sink δi more current than in the previous example; as a
result, the gate voltage of T11 rises. Transistors T11 and T12 share a common gate,
however; thus, T12 must also sink Im + δi. But only Im is present at the drain of
T12 . To compensate, the drain voltage of T12 , V2, must decrease. For small δis, the
Early effect serves to decrease the current through T12 , decreasing V2 linearly with
δi. For large δis, T12 must leave saturation, driving V2 to approximately 0 volts.
As desired, the output associated with the smaller input diminishes. For large δis,
Ic2 ≈ 0, and Ic1 ≈ Ic. The equation Im + δi = Io exp(Vc/Vo) describes transistor
T11 , and the equation Ic = Io exp((V1−Vc)/Vo) describes transistor T21 . Solving for
V1 yields

V1 = Vo ln(
Im + δi

Io
) + Vo ln(

Ic

Io
). (2)

The winning output encodes the logarithm of the associated input. The symmetrical
circuit topology ensures similar behavior for increases in I2 relative to I1.

Equation 2 predicts the winning response of the circuit; a more complex ex-
pression, derived in Appendix A, predicts the losing and crossover response of the
circuit. Figure 3 is a plot of this analysis, fit to experimental data.
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Figure 3 Experimental data (circles) and theoretical statements (solid lines) for a two-neuron
winner-take-all circuit. I1, the input current of the first neuron, is swept about the value of I2, the
input current of the second neuron; neuron voltage outputs V1 and V2 are plotted versus normalized
input current.

Figure 4 shows the wide dynamic range and logarithmic properties of the circuit;
the experiment in Figure 3 is repeated for several values of I2, ranging over four
orders of magnitude.
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Figure 4 The experiment of Figure 3 is repeated for several values of I2; experimental data of
output voltage response are plotted versus absolute input current on a log scale. The output voltage
V1 = V2 is highlighted with a circle for each experiment. The dashed line is a theoretical expression
confirming logarithmic behavior over four orders of magnitude (Equation 1).



The conductance of transistors T11 and T12 determines the losing response of
the circuit. The Early voltage, Ve, is a measure of the conductance of a saturated
MOS transistor. The expression

Ve = L
∂Vd

∂L
(3)

defines the Early voltage, where Vd is the drain potential of a transistor, and L is the
channel length of a transistor. Thus, the width of the losing response of the circuit
depends on the channel length of transistors T11 and T12 . Figure 3 shows data for
a circuit where the channel length of transistors T11 and T12 is 13.5µm. Figure 5
shows data for a circuit with a wider losing response; in this circuit, the channel
length for transistors T11 and T12 is 3µm, the smallest allowable in the fabrication
technology used.
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Figure 5 Experimental data (circles) and theoretical statements (solid lines) for a two-neuron
winner-take-all circuit with a channel length for transistors T11 and T12 of 3 µm. The dotted lines
show the losing response for the circuit used in Figure 3, which has a channel length for transistors
T11 and T12 of 13.5 µm.

Increasing the channel length of transistors T11 and T12 narrows the losing re-
sponse of the circuit; alternatively, circuit modification also can narrow the losing
response. The circuit shown in Figure 6 approximately halves the width of the
original losing response, through source degeneration of transistors T11 and T12 by
the added diode-connected transistors T31 and T32 . Figure 7 shows experimental
data for this modified circuit.
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Figure 6 Schematic diagram of a two-neuron winner-take-all circuit, modified to produce a
narrower losing response.
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Figure 7 Experimental data (circles) and theoretical statements (solid lines) for a two-neuron
winner-take-all circuit, modified to produce a narrower losing response. The dotted lines show losing
response for the circuit used in Figure 4.



TIME RESPONSE OF THE WINNER-TAKE-ALL CIRCUIT

A good winner-take-all circuit should be stable, and should not exhibit damped
oscillations (“ringing”) in response to input changes. This section explores these
dynamic properties of our winner-take-all circuit, and predicts the temporal re-
sponse of the circuit. Figure 8 shows the two-neuron winner-take-all circuit, with
capacitances added to model dynamic behavior.
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Figure 8 Schematic diagram of a two-neuron winner-take-all circuit, with capacitances added
for dynamic analysis. C is a large MOS capacitor added to each neuron for smoothing; Cc models
the parasitic capacitance contributed by the gates of T11 and T12, the drains of T21 and T22, and
the interconnect.

Appendix B shows a small-signal analysis of this circuit. The transfer function
for the circuit has real poles, and thus the circuit is stable and does not ring, if
Ic > 4I(Cc/C), where I1 ≈ I2 ≈ I. Figure 9 compares this bound with experimental
data.

If Ic > 4I(Cc/C), the circuit exhibits first-order behavior. The time constant
CVo/I sets the dynamics of the winning neuron, where Vo = kT/qκ ≈ 40 mV . The
time constant CVe/I sets the dynamics of the losing neuron, where Ve ≈ 50 V .
Figure 10 compares these predictions with experimental data, for several variants
of the winner-take-all circuit.
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Figure 9 Experimental data (circles) and theoretical statements (solid line) for a two-neuron
winner-take-all circuit, showing the smallest Ic, for a given I, necessary for a first-order response to
a small-signal step input.
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Figure 10 Experimental data (symbols) and theoretical statements (solid line) for a two-neuron
winner-take-all circuit, showing the time constant of the first-order response to a small-signal step
input. The winning response (filled circles) and losing response (triangles) of a winner-take-all
circuit with the static response of Figure 3 are shown; the time constants differ by several orders of
magnitude. Losing responses for winner-take-all circuits with the static responses shown in Figure 5
(squares) and Figure 7 (open circles) are also shown, demonstrating the effect of the width of static
response on dynamic behavior.



THE LOCAL NONLINEAR INHIBITION CIRCUIT

The winner-take-all circuit in Figure 1, as previously explained, locates the
largest input to the circuit. Figure 11 shows this behavior. Figure 11(a) is the
spatial input to a winner-take-all circuit with 16 neurons, with input 8 much higher
than all other inputs. Figure 11(b) shows the circuit response to this input; only
neuron 8 has significant response.

Certain applications require a gentler form of nonlinear inhibition. Sometimes,
a circuit that can represent multiple intensity scales is necessary. Without circuit
modification, the winner-take-all circuit in Figure 1 can perform this task. Appendix
C explains this mode of operation.

Other applications require a local winner-take-all computation, with each winner
having influence over only a limited spatial area. Figure 11(c) shows the desired
computation. As in Figure 11(b), neuron 8 has the largest response in the circuit.
However, neuron 8 suppresses the output of only nearby neurons; neurons far from
neuron 8 have significant responses, encoding their input signals.
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Figure 11 Comparison of idealized winner-take-all spatial response and the desired local
winner-take-all response. The horizontal axis of each plot represents spatial position in a 16-neuron
network. (a) The plot shows a spatial impulse function, used as input to compare the two concepts.
The vertical axis shows the input current to each neuron, with I8 ! Ik "=8. (b) The plot shows the
winner-take-all response. (c) The plot shows the local winner-take-all response, show neuron voltage
output on the vertical axis.

Figure 12 shows a circuit that computes the local winner-take-all function. The
circuit is identical to the original winner-take-all circuit, except that each neuron
connects to its nearest neighbors with a nonlinear resistor circuit (Mead, in press).
Each resistor conducts a current Ir in response to a voltage ∆V across it, where

Ir = Is tanh(∆V/(2Vo)). (4)

Is, the saturating current of the resistor, is a controllable parameter. The current
source Ic, present in the original winner-take-all circuit, is distributed between the
resistors in the local winner-take-all circuit.
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Figure 12 Schematic diagram of a section of the local winner-take-all circuit. Each neuron i
receives a unidirectional current input Ii; the output voltages Vi represent the result of the local
winner-take-all computation.

To understand the operation of the local winner-take-all circuit, we consider the
circuit response to a spatial impulse, defined as Ik & I, where I ≡ Ii"=k. Ik & Ik−1
and Ik & Ik+1, so Vck is much larger than Vck−1 and Vck+1 , and the resistor circuits
connecting neuron k with neuron k − 1 and neuron k + 1 saturate. Each resistor
sinks Is current when saturated; transistor T2k thus conducts 2Is + Ic current.
In the subthreshold region of operation, the equation Ik = Io exp(Vck/Vo) describes
transistor T1k , and the equation 2Is+Ic = Io exp((Vk−Vck)/Vo) describes transistor
T2k . Solving for Vk yields

Vk = Vo ln((2Is + Ic)/Io) + Vo ln(Ik/Io). (5)

As in the original winner-take-all circuit, the output of a winning neuron encodes
the logarithm of that neuron’s associated input.

As mentioned, the resistor circuit connecting neuron k with neuron k−1 sinks Is

current. The current sources Ic associated with neurons k−1, k−2, . . . must supply
this current. If the current source Ic for neuron k − 1 supplies part of this current,
the transistor T2k−1 carries no current, and the neuron output Vk−1 approaches zero.
Similar reasoning applies to neurons k+1, k+2, . . . . In this way, a winning neuron
inhibits its neighboring neurons.

This inhibitory action does not extend throughout the network. Neuron k needs
only Is current from neurons k − 1, k − 2, . . .. Thus, neurons sufficiently distant
from neuron k maintain the service of their current source Ic, and the outputs of



these distant neurons can be active. Since, for a spatial impulse, all neurons k − 1,
k − 2, . . . have an equal input current I, all distant neurons have the equal output

Vi#k = Vo ln(Ic/Io) + Vo ln(I/Io). (6)

Similar reasoning applies for neurons k + 1, k + 2, . . . .
The relative values of Is and Ic determine the spatial extent of the inhibitory

action. Figure 13 shows the spatial impulse response of the local winner-take-all
circuit, for different settings of Is/Ic.
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Figure 13 Experimental data showing the spatial impulse response of the local winner-take-all
circuit, for values of Is/Ic ranging over a factor of 12.7. Wider inhibitory responses correspond to
larger ratios. For clarity, the plots are vertically displaced in 0.25 volt increments.

CONCLUSIONS

The circuits described in this paper use the full analog nature of MOS devices
to realize an interesting class of neural computations efficiently. The circuits exploit
the physics of the medium in many ways. The winner-take-all circuit uses a single
wire to compute and communicate inhibition for the entire circuit. Transistor T1k

in the winner-take-all circuit uses two physical phenomena in its computation: its
exponential current function encodes the logarithm of the input, and the finite
conductance of the transistor defines the losing output response. As evolution
exploits all the physical properties of neural devices to optimize system performance,
designers of synthetic neural systems should strive to harness the full potential of
the physics of their media.



APPENDIX A

STATIC RESPONSE OF THE WINNER-TAKE-ALL CIRCUIT

Figure 3 in the main text compares data from the two-neuron winner-take-all
circuit with a closed-form theoretical statement describing the losing and crossover
response of the circuit. This appendix derives this theoretical statement.

Figure A1 shows a small-signal circuit model of the two-neuron winner-take-all
circuit (Figure 2 in the main text). For a particular operating point [I1, I2, Ic1, Ic2],
the model shows the effect of a small change in I1, denoted i1, on the circuit voltages
V1, V2, and Vc, indicated by the small-signal voltages v1, v2, and vc. In this model,
a linear resistor rij , in parallel with a linear dependent current source, with a con-
ductance gij , replaces each transistor Tij from Figure 2. For a particular operating
point in subthreshold, the small-signal parameters are

g11 = I1/Vo

g12 = I2/Vo

g21 = Ic1/Vo

g22 = Ic2/Vo

r11 = Ve/I1

r12 = Ve/I2

r21 = Ve/Ic1

r22 = Ve/Ic2 ,
(A1)

where Ve, the Early voltage, is a measure of transistor resistance, and Vo = kT/qκ.
This small-signal model is a linear system, which we can solve analytically using
conventional techniques; applying the approximation Ve + Vo ≈ Ve to the solution
yields the simplified equations

v1

i1
= (1/I1)(Vo + Ve(Ic2/Ic))

v2

i1
= −Ve(1/I1)(Ic1/Ic).

(A2)

i1 r11 g11vc

v1

vc

r21g21(v1 − vc) r22 g22(v2 − vc)

v2

r12 g12vc

Figure A1 Small-signal model of the two-neuron winner-take-all circuit.
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Note that both small- and large-signal quantities appear in Equation A2. We
can view the small-signal quantities as differential elements of large-signal quantities;
as a result, we can rewrite Equation A2 as the pair of nonlinear differential equations

dV1

dI1
= (1/I1)(Vo + Ve(Ic2/Ic))

dV2

dI1
= −Ve(1/I1)(Ic1/Ic).

(A3)

Solving this pair of nonlinear differential equations yields a complete description of
circuit response. We begin by eliminating Ic1 and Ic2 from the equations. Referring
to Figure 2, the equations

Ic1 = Io exp((V1 − Vc)/Vo)
Ic2 = Io exp((V2 − Vc)/Vo)

(A4)

describe transistors T21 and T22 . From Kirchoff’s current law, we know that Ic1 +
Ic2 = Ic; substitution of Equation A4 into this equation yields the expression

Ic = Io exp((V1 − Vc)/Vo) + Io exp((V2 − Vc)/Vo). (A5)

Dividing Equation A4 by Equation A5 eliminates Vc, leaving, after rearrangement,

Ic1/Ic =
1

1 + exp((V2 − V1)/Vo)

Ic2/Ic =
1

1 + exp((V1 − V2)/Vo)
.

(A6)

These expressions fit nicely into Equation A3, eliminating Ic1 and Ic2 , and leaving
a set of differential equations involving only V1, V2, and I1:

dV1

dI1
= (1/I1)(Vo + Ve(

1
1 + exp((V1 − V2)/Vo)

)) (A7a)

dV2

dI1
= −Ve(1/I1)(

1
1 + exp((V2 − V1)/Vo)

). (A7b)

Equation A7a contains V2 only in the subexpression

1
1 + exp((V1 − V2)/Vo)

, (A8a)

and Equation A7b contains V1 only in the subexpression

1
1 + exp((V2 − V1)/Vo)

. (A8b)

These subexpressions are both Fermi functions of the difference V1 − V2. For V1 −
V2 & Vo, subexpression A8a is approximately zero, whereas subexpression A8b is



approximately one; for V2 − V1 & Vo, subexpression A8a is approximately one,
whereas subexpression A8b is approximately zero. In the region V1 ≈ V2, we can
assume V1 and V2 are both changing with the same magnitude of slope relative
to I1. We can write this approximation as V1 − V2 ≈ 2(V1 − Vm) and V2 − V1 ≈
2(V2 − Vm), where, from the qualitative analysis in the main text, Vm ≡ V1 = V2

when I1 = I2 ≡ Im. We can use this approximation to decouple Equations A7a and
A7b, producing

dV1

dI1
= (1/I1)(Vo + Ve(

1
1 + exp(2(V1 − Vm)/Vo)

))

dV2

dI1
= −Ve(1/I1)(

1
1 + exp(2(V2 − Vm)/Vo)

).
(A9)

We can solve these equations by straightforward integration, yielding, after appli-
cation of the approximation Ve + Vo ≈ Ve,

ln(I1/Im) = (V1 − Vm)/Ve + (1/2) ln(1 + (Vo/Ve) exp(2(V1 − Vm)/Vo))(A10a)
ln(I1/Im) = (Vm − V2)/Ve + (1/2)(Vo/Ve)(1 − exp(2(V2 − Vm)/Vo)). (A10b)

Equation A10a predicts the value of I1 for a given value of V1, whereas Equation
A10b predicts the value of I1 for a given value of V2; in this way, these equations are
a closed-form approximation of circuit response. To understand the behavior of the
circuit, and to evaluate the effect of the approximations V1 − V2 ≈ 2(V1 − Vm) and
V2 − V1 ≈ 2(V2 − Vm), we can simplify Equations A10a and A10b for three regions
of interest: V1 ≈ V2 ≈ Vm, V1 & Vm while V2 " Vm, and V1 " Vm while V2 & Vm.

First consider the condition V1 ≈ V2 ≈ Vm. In this case, |V1 − V2| → 0,
I1/Im → 1, and we can linearize the transcendental functions in Equation’s A10a
and A10b, yielding the simpler relations

V1 = (Ve/2)((I1/Im) − 1)) + Vm

V2 = (Ve/2)(1 − (I1/Im)) + Vm.
(A11)

In this region, V1 and V2 are a linear function of I1, with a slope of ±Ve/(2Im).
Next, consider the condition V1 & Vm while V2 " Vm, valid when I1 > Im.

In Equation A10b, V2 " Vm implies exp(2(V2 − Vm)/Vo) → 0. This simplification
yields, after rearrangement,

V2 = Vo/2 + Vm − Ve ln(I1/Im). (A12)

If we use the notation I1 = Im + δi, as in the earlier qualitative analysis, we can
rewrite the subexpression ln(I1/Im) as ln(1 + (δi/Im)), which we can approximate
as δi/Im for small δi/Im, yielding the simplified result

V2 = Vo/2 + Vm − (Ve/Im)δi. (A13)



Thus, in this region, V2 decreases linearly with δi, with a slope of Ve/Im, which is
twice as large as in the previous condition.

We can similarly derive a simplified expression for V1, for the same condition
V1 & Vm while V2 " Vm. In Equation A10a, V1 & Vm implies (Vo/Ve) exp(2(V1 −
Vm)/Vo) & 1. This approximation yields, after rearrangement,

V1 = Vo ln(I1/Im) + (Vo/2) ln(Ve/Vo) + Vm. (A14)

For this condition, as predicted earlier in Equation 2 in the main text, V1 is a loga-
rithmic function of I1. However, when does the approximation (Vo/Ve) exp(2(V1 −
Vm)/Vo) & 1 hold? This inequality, when rearranged, yields the constraint

(V1 − Vm) & (Vo/2) ln(Ve/Vo). (A15)

Therefore, for a typical fabrication process, V1−Vm must be much greater than 0.15
volts for Equation A14 to hold! This error stems from the central approximation
V1 − V2 ≈ 2(V1 − Vm), which is valid for only V1 − V2 ≤ Vo. Thus, for this region of
operation, Equation 2 in the main text best predicts circuit behavior.

Finally, we consider the condition V1 " Vm while V2 & Vm, valid when I1 <
Im. In Equation A10a, V1 " Vm implies (Vo/Ve) exp(2(V1 − Vm)/Vo) → 0. This
simplification yields, after rearrangement,

V1 = Vm + Ve ln(I1/Im). (A16)

If we use the notation I1 = Im − δi, as in the earlier analysis, we can rewrite the
subexpression ln(I1/Im) as ln(1 − (δi/Im)), which we can approximate as −δi/Im

for small |− δi/Im|, yielding the simplified result

V1 = Vm − (Ve/Im)δi. (A17)

Thus, in this region, V1 decreases linearly with δi, with a slope of Ve/Im. The losing
responses for V1 and V2 are thus identical.

We can similarly derive a simplified expression for V2, for the same condition
V1 " Vm while V2 & Vm. For Equation A10b, V2 & Vm implies exp(2(V2 −
Vm)/Vo) & 1. This approximation yields, after rearrangement,

ln(I1/Im) = (Vm − V2)/Ve − (1/2)(Vo/Ve) exp(2(V2 − Vm)/Vo). (A18)

As V2 − Vm increases, the right side of this equation grows exponentially large and
negative, forcing I1 to grow closer and closer to zero; thus, V2 is constant with I1.
However, the poor approximation V2 −V1 ≈ 2(V2 −Vm) for V2 −V1 ≥ Vo stunts this
exponential growth. The qualitative analysis in the main text predicts this constant
value accurately, as

V2 = Vo ln(
Im

Io
) + Vo ln(

Ic

Io
). (A19)



In summary, Equations A10a and A10b predict the losing and crossover response
of the circuit, whereas Equations 2 and A19 predict the winning response of the
circuit. Figure 4 is a plot of this analysis, fitted to experimental data. Figure
A2 expands the crossover region of Figure 4, showing the crossover region between
losing and winning analysis. The theoretical predictions in Figure 5 and Figure 7
also use this analysis, with altered values of Ve.
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Figure A2 Experimental data (circles) and theoretical statements (solid lines) for a two-neuron
winner-take-all circuit in the crossover region.



APPENDIX B

DYNAMIC RESPONSE OF THE WINNER-TAKE-ALL CIRCUIT

In the main text, we presented theoretical predictions of the time response of
the winner-take-all circuit, and compared these predictions with experimental data,
in Figure 9 and 10. In this appendix, we derive these theoretical predictions.

Figure 8 in the main text shows a schematic diagram for a two-neuron winner-
take-all circuit, with capacitances added to model dynamic behavior. Figure B1
shows a small-signal circuit model for this circuit.

i1 r11 g11vc

v1

vc

r21g21(v1 − vc) r22 g22(v2 − vc)

v2

r12 g12vcC1 C1

Cc

Figure B1 Small-signal model of the two-neuron winner-take-all circuit, with capacitances added
to model dynamic behavior.

For a particular operating point [I1, I2, Ic1, Ic2], the model shows the effect of a
small change in I1, notated i1, on the circuit voltages V1, V2, and Vc, indicated
by the small-signal voltages v1, v2, and vc. In this model, a linear resistor rij , in
parallel with a linear dependent current source, with a conductance gij , replaces
each transistor Tij from Figure 2. For a particular operating point in subthreshold,
the small-signal parameters are

g11 = I1/Vo

g12 = I2/Vo

g21 = Ic1/Vo

g22 = Ic2/Vo

r11 = Ve/I1

r12 = Ve/I2

r21 = Ve/Ic1

r22 = Ve/Ic2,
(B1)

where Ve, the Early voltage, is a measure of transistor resistance, and Vo = kT/qκ.
This small-signal circuit model is a linear system, which we can solve analytically
using conventional techniques. The resulting solution, unfortunately, is a function
of the unsolved large signal Ic1 and Ic2 . However, for the input conditions I2 = Im

and I1 = Im + δi, we can reasonably make the approximations Ic1 ≈ Ic and Ic2 ≈ 0
for relatively small δi, due to the exponential dependence of T21 and T22 on V1 and
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V2. Using these approximations, we can express the small-signal voltages v1 and v2

as linear functions of the small-signal input current i1, as

v1

i1
= (

Vo

I1
)

((CcVo/Ic)s + 1)
(s/(a + b) + 1)(s/(a− b) + 1)

(B2)

and
v2

i1
= −(

Ve

I1
)

1
((CVe/I2)s + 1)(s/(a + b) + 1)(s/(a− b) + 1)

(B3)

where
a =

I1

2CVe
+

Ic

2CcVo
(B4)

and

b =
√

(
I1

2CVe
)2 + (

Ic

2CcVo
)2 − (

IcI1

CCcV 2
o

). (B5)

If b is an imaginary number, the circuit has complex poles, and exhibits undesirable
ringing behavior. If Ic > 4I1(Cc/C), then b is real, and ringing does not occur.
Figure 9 in the main text compares experimental data with this inequality.

When b is real, the circuit exhibits first-order behavior. We can simplify Equa-
tions B2 and B3, and show that the first-order time constant for V1 is CVo/I, and
the first-order time constant for V2 is CVe/I, where I1 ≈ I2 ≡ I. Figure 10 in the
main text compares experimental data with these time constants.



APPENDIX C

REPRESENTING MULTIPLE INTENSITY SCALES

This appendix explains a regime of operation of the winner-take-all circuit that
represents multiple input intensity scales in the output, while still functioning as an
inhibitory circuit.

Consider an N -neuron winner-take-all circuit, with input currents I1 & I2 &
. . . & IN . As shown in Equation 1 in the main text, the output voltage V1 is

V1 = Vo ln(
I1

Io
) + Vo ln(

Ic

Io
), (C1)

while V2 . . . VN are approximately zero. The output does not represent the input
ordering I2 & I3 & . . . & IN ; the largest input wins, and all other inputs lose.
We can operate the circuit in another regime, however, which allows inputs I1 . . . Ik
to win, and inputs Ik+1 . . . IN to lose, where the magnitude of Ik is under exter-
nal control. Voltage outputs V1 . . . Vk−1 are now binary representations, while Vk
maintains a logarithmic encoding of the input current Ik.

In previous analysis in this paper, we used ideal current sources to represent
I1 . . . IN . In Figure C1, we replace these ideal sources with transistor realizations.

T11

T21

I1

V1

Ic

Vc

T31 T32

V2

I2

T22

T12 T1N

T2N

IN

VN

T3N

Ic1 Ic2 IcN

Figure C1. Winner-take-all circuit, with transistors realizations replacing ideal input current
sources.

Transistors T31 . . . T3N , when operating in the subthreshold region, realize ideal
current sources if Vdd−Vk > 2Vo. Recall our input I1 & I2 & . . . & IN , and consider
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the effect of increasing the value of current source Ic. As shown in Equation C1, the
neuron output V1 increases with Ic. For large Ic, transistor T21 is no longer operating
in the subthreshold region. In this case, the equation Ic1 = k′(W/L)(V1−Vc −VT )2
describes T21 , where W and L are the width and length of T21 , and k′ and VT (the
threshold voltage) are fabrication constants. We can solve for V1 for this situation,
as

V1 = Vo ln(
I1

Io
) +

√
Ic

k′(W/L)
+ VT . (C2)

If we increase Ic further, V1 continues to increase. For a sufficiently large Ic, V1 can
approach Vdd. In this situation, T31 begins to turn off, and no longer acts as an
ideal current source supplying I1. In this case, we can model T21 as an independent
current source, supplying the current Is ≡ k′(W/L)(Vdd − Vc)2, as shown in Figure
C2.

Is

Ic

Vc

T32

V2

I2

T22

T12 T1N

T2N

IN

VN

T3N

Ic1 Ic2 IcN

Figure C2. Winner-take-all circuit, after modeling a saturated neuron with the independent current
source Is.

To a first approximation, Figure C2 shows a (N −1) neuron winner-take-all circuit,
with an effective control current of Ic − Is.

We can apply this technique to represent multiple input intensity scales. Recall
the input condition I1 & I2 & . . . & IN , and the desired behavior of outputs:
V1 . . . Vk−1 to be binary on, Vk to maintain a logarithmic encoding of the input
current Ik, and all other output voltages to be approximately zero. To produce
this behavior, we simply increase Is, until V1 . . . Vk−1 are approximately Vdd, but
Vk < Vdd.
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