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Abstract

We have developed a real-time system to transform an audio sig-
nal into several specialized representations of sound. The system
uses analog circuit models of biological audition to compute these
representations. We report on a speech recognizer that uses this
system for feature extraction, and we evaluate the performance of
this speech recognition system on a speaker-independent 13-word
recognition task.

1. INTRODUCTION

Neurophysiologists and psychoacousticans have made fundamental advances in un-
derstanding biological audition. Computational models of auditory processing,
which allow the quantitative assessment of proposed theories of auditory processing,
play an important role in the advancement of auditory science.

In addition to serving a scientific function, computational models of audition may
find practical application in engineering systems. Human performance in many
auditory tasks still exceeds the performance of artificial systems, and the specific
characteristics of biological auditory processing may play an important role in this
difference. Current engineering applications of auditory models under study include
speech recognition (Jackowoski et al., 1995; Ghitza, 1998; Seneff, 1988), sound
separation (Cooke et al., 1994), and masking models for MPEG-audio encoding
(Colomes et al., 1995).



Computation time is a major limitation in the engineering application of auditory
models. For example, the complete sound separation system described in (Brown
and Cooke, 1994) operates at approximately 4000 times real time, running un-
der UNIX on a Sun SPARCstation 1. For most engineering applications, auditory
models must process input in real time; for many of these applications, an audi-
tory model implementation also needs to be low-cost and low-power. Examples
of these applications include robust pitch-tracking systems for musical instrument
applications, and robust feature extraction for battery operated speech recognizers.

One implementation approach for auditory models in these products is to design
low-power special-purpose digital signal processing systems, as described in (Chan-
drakasan and Brodersen, 1995). However, in many of these potential products, the
input takes an analog form: a voltage signal from a microphone or a guitar pickup.
For these applications, an alternative architecture is a special-purpose analog to dig-
ital converter, that computes auditory model representations directly on the analog
signal before digitization.

Analog circuits that compute auditory representations have been implemented and
characterized by several research groups – these working research prototypes include
several generation of cochlear models (Lyon and Mead, 1988; Liu et al., 1992; Watts
et al. 1992; van Schaik et al., 1995), periodicity models (Lazzaro and Mead, 1989a;
Lyon, 1991), spectral-shape models (Lazzaro, 1991; van Schaik et al., 1995), and
binaural models (Lazzaro and Mead, 1989b; Bhadkamkar, 1994).

A prime benefit of these circuit structures is very low power consumption: the cir-
cuit techniques used in most of these prototypes were originally developed for wrist-
watch and pacemaker applications. For example, a recent publication on cochlear
design techniques reports a 51-channel cochlear filterbank that consumes only 11
microwatts at 5 volts (Watts et al., 1992). Voltage and process scaling, and advances
in circuit design, could reduce power consumption even further.

If auditory models offer a performance advantage over standard signal processing
techniques in an application, and a compact implementation that only consumes a
few milliwatts of power is needed, a hybrid system that couples a special-purpose
analog to digital converter with a low-power digital processor may be a competitive
alternative to a full-digital implementation. However, even if auditory models only
offer comparable performance to standard techniques for an application, an analog
auditory model implementation may be the best choice for front-end processing,
if the system requires microwatt operation (for example, size limitations dictate
a lithium watch battery power source). For such micropower systems to become
a reality, micropower implementations of pattern-recognition functions must also
be available: a recent report on a nanopower neural-network recognition structure
(Coggins et al., 1995), used in an implantable cardiac morphology classification
system, is an example of progress in this area.

Standard analog performance measurements (S/N ratio, dynamic range, ect.) aren’t
sufficient for determining the suitability of analog implementations of non-linear,
multi-stage auditory models for a particular application. This paper documents
a more direct approach to evaluating analog auditory models: we have integrated



a multi-representation analog auditory model with a speech recognition system,
and measured the performance of the system on a speaker-independent, telephone-
quality 13-word recognition task.

The structure of the paper is as follows. We begin with a brief description of our
multi-representation auditory model hardware implementation. We then describe
in detail the specific auditory representations we use in our speech recognition ex-
periments, and the techniques we use for generating a feature vector suitable for
speech recognition systems. Next, we assess word recognition performance of the
system, and compare the results with state-of-the-art feature extraction systems.
The paper concludes with discussion and suggestions for further research.

2. SYSTEM DESCRIPTION

We have designed a special-purpose analog-to-digital converter chip, that performs
several stages of auditory pre-processing in the analog domain before digitization
(Lazzaro et al., 1994; Lazzaro and Wawrzynek, 1995b). Configurable parameters
control the behavior of each stage of signal processing. Figure 1 shows a block
diagram of a system that uses three copies of this converter chip: by configuring
each chip differently, the system produces three different auditory representations
in response to an analog input.

This system acts as a real-time audio input device to a Sun workstation: a pre-
amplified microphone input can be connected directly to the converters for a low-
latency, real-time display of spontaneous speech. Alternatively, the system can
receive analog input from the 8 Khz sampling rate, 8-bit mu-law audio output of
the workstation, for controlled experiments: all experiments reported in this paper
were done using this method of sound presentation. The dynamic range of the
converter chip is 40 to 60 dB, depending on the signal processing configuration in
use: input sensitivity is 1 mV (peak), and maximum recommended signal amplitude
is 1 V (peak).

Sun
Timer
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Out
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Sound Input

Multi-Converter System
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Figure 1. Block diagram of the multi-converter system.



Figure 2 shows the analog signal path of the auditory pre-processor in the converter
chip. Processing begins with a silicon cochlea circuit (Lyon and Mead, 1988). A
silicon cochlea is an analog circuit implementation of the differential equations that
describe the traveling wave motion of physiological cochleas. The cochlea design
used in this chip maps a linear, one-dimensional partial-differential equation into
circuits, as a cascade of continuous-time filter sections with exponentially decreasing
time constants. The second-order filter sections have a low-pass response, with a
slight resonant peak before cutoff. The cascade acts as a discrete-space, continuous-
time finite-element approximation of the partial differential equation.

Like wavelet filterbanks, the silicon cochlea outputs balance temporal and spectral
acuity. The cochlear output response, a lowpass filter with a sharp cutoff and a
slight resonant peak, derives its spectral selectivity from the collective interaction of
the slightly-resonant circuits in the series cascade, not from parallel highly-resonant
circuits as in a standard filterbank. By avoiding highly-resonant filters, the cochlear
processing preserves the temporal details in each output channel.

This cochlear design is the first stage of processing in our chip. The cochlea consists
of 139 filter stages; we use the outputs of the last 119 stages. The first 20 outputs
are discarded, because their early position in the cascade results in a poor approx-
imation to the desired differential equation solution. Four parameters control the
tuning of the silicon cochlea, supporting variable frequency ranges and resonance
behaviors.

Next in the signal processing chain (Figure 2) are circuits that model the signal
processing that occurs during the sensory transduction of mechanical motion in the
cochlea. These operations include time differentiation, half-wave rectification, am-
plitude compression, and the conversion of the analog waveform representation into
probabilistic trains of fixed-width, fixed-height spikes (Lazzaro and Mead, 1989c).
Each of the 119 cascade outputs is coded by 6 probabilistic spiking circuits. Note
that no time averaging has been done in this signal processing chain; the cycle-by-
cycle waveform shape is fully coded in each set of 6 spiking outputs.

Sensory Transduction

Temporal Autocorrelation

Temporal Adaptation

Silicon Cochlea

(119 Outputs)

Input
Audio

Figure 2. Analog signal path of the silicon auditory model.
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Figure 3. Periodicity-based spectral shape computation: (a) silicon cochlea tun-
ing response (b) temporal autocorrelator tuning response (c) the combination of
cochlear and autocorrelator processing.



Different secondary representations in the brain use the cochlear signal as input,
and produce outputs that represent more specialized aspects of the sound. In our
chip processing chain, two signal processing blocks follow the sensory transduction
block, that may be used to model a variety of known and proposed secondary
representations.

The first processing block (Figure 2) implements temporal autocorrelation, in a
manner described in detail in (Lazzaro, 1991). The six spiking outputs associated
with each cochlear output are sent into a single temporal autocorrelator, which
produces a single output. Six parameters fix the autocorrelation time constant
and autocorrelation window size at both ends of the representation; autocorrelation
parameters for intermediate taps are exponentially interpolated.

The temporal autocorrelation block can be configured to generate a representation
that codes the spectral shape of a signal. To generate this spectral shape represen-
tation, the autocorrelator associated with each cochlear channel is tuned so that the
best frequency of the cochlear channel matches the first peak of the autocorrelation
function (Sachs and Young, 1980). Figure 3 illustrates the algorithm: Figure 3(a)
shows the frequency response of a cochlear output, Figure 3(b) shows the output of
a temporal autocorrelator tuned to the best frequency of the cochlear output, and
Figure 3(c) shows the effect of combining the temporal autocorrelator and cochlear
filter. By cascading the cochlea and temporal autocorrelator blocks, a narrow, sym-
metrical filter is created; this filter is non-linear, and achieves a narrow bandwidth
without using a highly resonant linear filter.

The final processing block in the signal processing chain (Figure 2) implements
temporal adaptation, which acts to enhance the transient information in the signal.
Figure 4 illustrates temporal adaption: in response to a tone burst (top trace),
the circuit produces a series of pulses (bottom trace). The number of pulses per
second is highest at the onset of the sound, and decays to a lower rate during the
unchanging portion of the tone. Five parameters fix the time constant and peak
activity rate of temporal adaption at both ends of the representation: parameters
for intermediate taps are exponentially interpolated from these fixed values. These
parameters support a wide range of adaptive responses, including temporal adapta-
tion behaviors typical of auditory nerve fibers, as well as behaviors typical of on-cell
neurons in the cochlear nucleus. The circuits used in the temporal adaptation block
are described in detail in (Lazzaro, 1992).

Figure 4. Temporal adaptation: top trace is audio input (gated tone burst),
bottom trace shows adaptive response. Bar length is 5ms.



As shown in Figure 4, the final outputs of the auditory model take the form of
pulse trains. These pulses are fixed-width, fixed-height, and occur asynchronously;
they are not synchronized by a global clock. The information sent by a spike is
fully encoded by its moment of onset. In collaboration with other researchers,
we have developed efficient methods to transmit the information from an array of
asynchronous spiking circuits off chip (Lazzaro et al., 1993), and to combine the
information from several chips to form a single data stream in an efficient way (Laz-
zaro and Wawrzynek, 1995a). We use these methods in our multi-representation
system.

Figure 5 shows the programmer’s model of this data stream. Data from the system
takes the form of a list of “events”: each event corresponds to a single spike of an
output unit from a chip in the multi-representation system. Each event includes
information specifying the chip sending the spike, the cochlear channel associated
with the spike, and the moment of onset of the spike. The onset timestamp has a
resolution of 20µs; event lists are strictly ordered with respect to onset times.

We designed a software environment, Aer, to support real-time, low-latency vi-
sualization of data from the multi-converter system (Lazzaro et al., 1994). The
environment also supports a scripting language for the automatic collection of sys-
tem response to large sound databases.

3. REPRESENTATIONS FOR SPEECH RECOGNITION

We configured our multi-representation system to generate specialized represen-
tations for speech analysis: a spectral shape representation for voiced speech, a
periodicity representation for voice/unvoiced decisions, and an onset representation
for coding transients. Figure 6 shows a screen from Aer, showing these three rep-
resentations as a function of time: the input sound for this screen is a short 800
Hz tone burst, followed by a sinusoid sweep from 300 Hz to 3 Khz. For each rep-
resentation, the output channel number is plotted vertically; each dot represents a
pulse.

Data Format for an Event (32 bits)

16-bit Timestamp

Chip Number

Output Unit

(LSB – 20 µs)

Figure 5. Programmers interface for events.
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Figure 6. Data from the multi-converter system, in response to a 800-Hz pure
tone, followed by a sinusoidal sweep from 300Hz to 3Khz.
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The top representation codes for periodicity-based spectral shape. For this represen-
tation, the temporal autocorrelation block generates responses as shown in Figure
3, and the temporal adaptation block is inactive. Spectral frequency is mapped log-
arithmically on the vertical dimension, from 300 Hz to 4 Khz; the activity in each
channel codes the presence of a periodic waveform at that frequency. The difference
between a periodicity-based spectral method and a resonant spectral method can
be seen in the response to the 800 Hz sinusoid onset: the periodicity representation
shows activity only in a narrow band of channels, whereas a spectral representation
would show broadband transient activity at tone onset.

The bottom representation codes for temporal onsets. For this representation, the
temporal adaptation block is active, and the temporal autocorrelation block is inac-
tive. The spectral filtering of the representation reflects the silicon cochlea tuning:
a low-pass response with a sharp cutoff and a small resonant peak at the best fre-
quency of the filter. Temporally, the representation produces a large number of
pulses at the onset of a sound, decaying to a small pulse rate with a 10ms time
constant. The black, wideband lines at the start of the 800 Hz tone and the sinu-
soid sweep illustrate the temporal adaptation; the tuned response throughout the
sinusoid sweep illustrates the low-pass spectral tuning.

The middle representation is a summary autocorrelogram, useful for pitch process-
ing and voiced/unvoiced decisions in speech recognition. This representation is not
raw data from a converter; software post-processing is performed on a converter’s
output to produce the final result. The frequency response of the converter is set
as in the onset representation; the temporal adaptation response, however, is set
to a 100ms time constant. The converter output pulse rates are set so that the
cycle-by-cycle waveform information for each output channel is preserved.

To complete the representation, a set of running autocorrelation functions x(t)x(t−τ)
is computed for τ = k 105µs, k = 1 . . . 120, for each of the 119 output channels.
These autocorrelation functions are summed over all output channels to produce
the final representation, a summary of autocorrelation information across frequency
bands. τ is plotted as a linear function of time on the vertical axis. The correlation
multiplication can be efficiently implemented by integer subtraction and comparison
of event timestamps; the summation over channels is done by merging event lists.
Figure 6 shows the qualitative characteristics of the summary autocorrelogram: a
repetitive band structure in response to periodic sounds. In contrast, the summary
autocorrelation function of a noise signal shows no long-term spatial structure.

Figure 7 shows the output response of the multi-converter system in response to
telephone-bandwidth-limited speech; the phonetic boundaries of the two words,
“five” and “nine”, are marked by arrows. The vowel formant information is shown
most clearly by the strong peaks in the spectral shape representation; the wideband
information in the “f” of five is easily seen in the onset representation. The summary
autocorrelation representation shows a clear texture break between vowels and the
voiced “n” and “v” sounds.



4. FEATURES FOR SPEECH RECOGNITION

The data shown in Figures 6 and 7 share many properties with neural responses.
Each output unit codes information asynchronously, and the effective sampling
period is adaptive and data dependent. Each representation in the system is spe-
cialized for a certain property of sound. These representations are not uncorrelated:
there is considerable redundancy between the representations, and among output
units of a single representation. These properties of neural auditory representations
are summarized in Figure 8.

Also shown in Figure 8 are the contrasting properties of conventional feature repre-
sentations used in speech recognition systems. These representations generate fea-
tures at a single uniform frame rate, typically 10-20ms, unsynchronized to acoustic
features. A single, general-purpose spectral representation is typically used: often,
both signal energy information and pitch contour information is removed from this
representation. Finally, low-dimensional representations are used (5 to 15 elements,
typically), and the components of the representation are often uncorrelated. These
front-end properties reflect the statistical and architectural properties of recognition
systems.

Figure 8 depicts a “representation-recognizer gap” that complicates the use of au-
ditory models for speech recognition. We address this issue in two ways: by trans-
forming the representations shown in Figures 6 and 7 to have properties closer to
conventional front-end representations, and by choosing speech recognition technol-
ogy that is more compatible with auditory models. The method we used to extract
a feature vector from our multi-representation system output is described below.

The first step in feature extraction is to convert the asynchronous, event-list repre-
sentation into a sequence of uniformly sampled frames. Each frame output consists
of 3 vectors (one for each representation) with 119 floating point elements (one for
each output unit), and codes the spike activity that occurs during a 25ms interval.
Subsequent frames overlap in time by 12.5ms. To generate each frame element, the
spiking pattern during the 25ms interval is considered as a train of delta functions
with unit height: this function is multiplied by a Hamming window. After multipli-
cation, the heights of the delta functions are summed to yield the final floating-point
feature element value. These operations are graphically shown in Figure 9.

Auditory Models Speech Recognition

Adaptive Sampling Uniform Sampling

Specialized Features General-Purpose Features

Multiple Representations Single Representation

High-Dimensional Low-Dimensional

Correlated Features Uncorrelated Features

Figure 8. Comparison of auditory representations and current speech recognition
technology.



To reduce the size of the spectral-shape and onset representations, we subsample the
original 119-element vectors using symmetrical triangular filters with a 50-percent
filter response overlap. This subsampling produces a 5-element vector coding on-
sets, and an 8-element vector coding spectral shape. The subsampling procedure is
graphically shown in Figure 10.

To reduce the size of the summary autocorrelogram, we compute the discrete co-
sine transform of the 119-element vector, and use the first two components of the
transform as the summary autocorrelogram feature vector. We choose this re-
duction technique to enhance the coding of voicing in the representation, while
de-emphasizing formant information.

These reduction techniques resolve the feature-size table entries in Figure 8; they
do not, however, address the correlation between feature elements. As detailed in
the next section, we use recognition technologies that are relatively insensitive to
correlations between feature elements to address this issue.

To complete our feature vector computations, we compute temporal difference fea-
ture vectors (“delta” features) for each primary representations, using a 5-frame
window to compute differences. The resulting feature vector has 30 elements: 8
spectral-shape elements, 5 onset elements, 2 summary autocorrelogram elements,
for a total of 15 primary elements, together with 15 delta features.

25ms

25ms

1

1

(a)

(b)

Figure 9. Graphic description of algorithm for converting the asynchronous event-
list representation into uniformly sampled frames. A 25ms series of unit-height
events (a) is scaled by a Hamming window (b). The heights of the scaled events
are added to form the frame value.

Feature Vector

Reduction Filters

Reduced Vector

(119 Elements)

(8 elements)

Figure 10. Graphic description of algorithm for subsampling full 119-element
representations into a reduced feature vector.



5. SPEECH RECOGNITION ARCHITECTURES

In modern speech recognition architectures, word recognition from a sequence of
feature vectors is a two-step process. In the first step, a pattern classifier maps the
sequence of feature vectors into a sequence of predictions of the spoken phoneme
in progress. In the second step, a vocabulary of permitted words is introduced (a
lexicon), expressed as probabilistic state machines (Hidden Markov Models, abbre-
viated as HMMs). The sequence of phoneme probabilities is then mapped into a
sequence of words from the lexicon, using dynamic programming.

While state models for a lexicons are typically crafted by hand, the features-to-
phonemes pattern classifier is trained automatically, using a large database of ex-
ample words. One popular classifier for this task uses a linear mixture of multivari-
ate Gaussian functions to map the feature vector into the probability a particular
phoneme is in progress. A complete mixture model has several types of parameters:
each multi-variate Gaussian function has a mean vector and a diagonal covariance
matrix, and weighting parameters control the contribution of each function in the
mixture.

The choice of a diagonal covariance matrix reduces the number of covariance param-
eters for an N-element feature vector from N2 to N . This choice enables the liberal
application of multiple Gaussians to model probability space, using an acceptably
small number of parameters. Low-parameter models require less training data for
effective parameter estimation, and often improve generalization properties.

Choosing a diagonal covariance matrix is warranted if the off-diagonal matrix el-
ements are small; this matrix property will be true of the elements of the feature
vector are uncorrelated. However, as noted in the last section, the elements of the
feature vector we generate from our multi-representation system are indeed corre-
lated.

An alternative approach for mapping a feature vector into a phoneme probabil-
ity vector is to use a multi-layer perceptron (MLP) architecture, trained with the
backpropagation algorithm. This approach, as described in (Bourlard and Morgan,
1994), is more tolerant of feature vectors whose elements are correlated. The speech
recognition results we present in this paper all use this MLP-based recognizer.

The input to the neural-network classifier is the feature vector of the current frame,
as well as feature vectors from the 4 previous frames and the 4 upcoming frames for
context. The net has a single hidden layer; unless otherwise indicated we use 200
hidden units in the system. There are 56 network outputs, associated with the 56
most-common phonemes; these outputs are the inputs to a dynamic programming
module that performs word recognition.

In our speech recognition experiments, we used a database of 200 adults speaking
13 English words in isolation (the digits, including both “oh” and “zero”, plus “yes”
and “no”), for a total of 2600 utterances. The database, supplied by Bellcore, was
recorded over the U.S. public telephone network: the recordings typically have good
signal-to-noise ratios, but display the limited bandwidth typical of the telephone
network. Most of our experiments used this database directly; in some experiments,



we added recorded noise from the interior of a running automobile to the speech,
at a level resulting in a 10dB signal-to-noise ratio.

The small size of the database results in a significant variance of recognition per-
formance, depending on the particular words chosen to be in the training set and
the test set. To counter this problem, we divide the database into 4 segments, each
consisting of 650 utterances by 50 speakers. We then train up 4 different recognizers
using a different selection of three segments for training data, while testing on the
fourth segment. Note that a recognizer is never tested using utterances used for its
training. In this paper, we report the error scores for each of these four recognizers,
along with the averaged score of the four recognizers.

In our recognition experiments, each word is modeled using a multi-state HMM; each
state has a self-loop branch and a branch to the next state, with fixed transition
probabilities of 0.5 for each branch. The model length varies with the number of
phonemes in the word: “eight” is the shortest model, with 13 states, while “seven”
is the longest model, with 18 states.

This isolated word database has been used for several previous speech recognition
studies at ICSI, using the MLP-based recognizer in conjunction with two popu-
lar feature extraction systems, PLP and J-RASTA-PLP. These recognition studies,
summarized in Figure 11, serve as a benchmark for comparison with recognition
experiments using feature vectors derived from our multi-representation auditory
model. Perceptual Linear Prediction (PLP) is a popular feature extraction system
based on human perceptual data from psychophysics, that works well for speech
recorded with high signal-to-noise ratios through benign transmission channels (Her-
mansky, 1990). The J-RASTA-PLP system (Hermansky and Morgan, 1994; Ma,
1995) is an enhanced version of PLP, designed to provide feature vectors relatively
independent of noise mixed with the speech signal, as well as providing feature vec-
tors independent of slowly-varying changes in the spectral properties of the speech
transmission channel.

The first table entry in Figure 11 shows the performance of J-RASTA-PLP on the
isolated word database, for the 4 data segmentations described above: both training
and test data are the original “clean” database, without added car noise. The 1.8
percent average error score is comparable with current commercial systems used
in voice-mail applications, using real-world telephony data: trade publications for
interactive voice response telephony advise users to expect 3-5% scores for isolated
digit recognizers in the field. Systems with error rates under 5% can work well in
an application, if good error recovery strategies are available for the task.

Front End Conditions 1 2 3 4 Average

J-RASTA-PLP Clean 2.3 1.5 1.4 2.0 1.9

J-RASTA-PLP Noisy 11.4 10.2 10.3 11.5 10.9

PLP Noisy 42.8 37.1 40.8 49.1 42.4

Figure 11. Percent error for PLP-based front-ends (four database partitions).



The next two table entries in Figure 11 describe performance for recognizers that
were trained “clean” utterances, but whose test utterances were mixed with auto-
mobile noise (10 dB signal-to-noise ratio), as described earlier. Note that in addition
to being corrupted with noise, the test utterances were also novel: a recognizer is
never tested using noisy utterances whose clean versions were a part of the training
set. These table entries show the benefits of enhancing a feature extraction system
to be robust to additive noise: the average error for PLP is 4 times greater than
for J-RASTA-PLP. However, the absolute error of J-RASTA-PLP tested with noisy
speech (10.9%) is marginal for use in an application.

6. SPEECH RECOGNITION EXPERIMENTS

We used the isolated-word database and MLP-based recognition system described
in the previous section to evaluate the performance of the 30-element feature vec-
tor derived from our multi-representation system. Figure 12 summarizes the error
performance of the system; all the scores in this table reflect “clean” testing and
training data. The final line of Figure 12 shows recognition performance using the
full 30-element feature vector. This 4.1% error rate is sufficiently low for many ap-
plications, although it is significantly larger than the J-RASTA-PLP’s benchmark
error rate (1.8%).

Parameters Hidden Units 1 2 3 4 Average

65,586 326 6.6 6.9 5.4 8.0 6.7

65,468 276 5.7 5.8 4.5 5.5 5.4

65,531 225 4.9 5.1 4.3 4.9 4.8

Features

65,456 200 4.9 4.2 3.2 4.0 4.1SS + Auto + Onset

SS + Onset

SS + Auto

SS

Figure 12. Percent error for feature vectors derived from auditory representations
(four database partitions). Other fields show number of hidden units and number
of parameters in the MLP classifier net. Code: SS = spectral shape features, Onset
= onset features, Auto = autocorrelogram features.

Features

SS + Auto + Onset

SS + Onset

SS + Auto

SS

Total 9/5

1.4

oh/no others

4.1

4.8

5.4

6.7 1.0 4.4

1.1

1.0

0.7

0.8

0.7

0.6

3.5

3.1

2.8

Figure 13. Error analysis of the recognition experiments in Figure 12 (averaged
over partitions). Errors due to the two leading word confusions are listed (confusing
“five” and “nine”, and confusing “oh” and “no”), as well as the residual error.



To illustrate the relative contributions of the three representations in our system,
we also trained recognizers using subsets of our 30-element feature vector, that
contained only the elements from one or two of the representations in the system:
the penultimate lines of Figure 12 show these scores. The number of hidden units
for each recognizer was varied inversely with the number of elements in the reduced
feature vector, to yield an MLP with approximately 65,000 parameters for each
experiment.

A comparison of the different recognizers in Figure 12 shows the effectiveness of
combining multiple representations of speech. Adding features from two additional
representations (the onset features and the autocorrelation features) to the primary
spectral-shape features decreases the average error by 61%.

Figure 13 shows an error analysis of the recognizers of Figure 12; for each recognizer,
the percentage error attributed to the two most likely word confusions (“five” and
“nine”, and “no” and “oh”) are shown, along with the residual error contributed by
all other confusions. The addition of onset features and autocorrelogram features
improves the recognition performance for all three categories of confusions.

In Figure 13, note that for five/nine confusions, the error improvements for adding
onset features (1.4% to 1.1%, a 0.3% improvement) and for adding autocorrelation
features (1.4% to 1.0%, a 0.4% improvement) add to equal the error improvement
for adding both onset and autocorrelation features to spectral shape features (1.4%
to 0.7%, a 0.7% improvement). This linear addition suggests the statistical inde-
pendence of the information added by the onset and autocorrelation features for
disambiguating “five” and “nine”. Conversely, the table shows the statistical de-
pendence of the information added by the onset and autocorrelation features for
disambiguating words in the “others” category. If these features were statistically
independent, an error rate of 2.2% (not 2.8%) would be expected for the “others”
category for the full feature vector.

Figure 14 shows the error performance of the recognizers trained for Figure 12,
when tested on the “noisy” utterances described in the last section. This table
shows uniformly poor recognition results, comparable with the noisy recognition
performance of PLP shown in Figure 11, and 5.5 times worse than the noisy recog-
nition performance of J-RASTA-PLP. Although early studies of speech recognition
in noisy conditions using auditory models reported encouraging results (Ghitza,
1998; Seneff, 1988), later studies found no significant noise robustness qualities for
auditory models (Lippmann, 1995), and the data in Figure 14 confirms this finding.

Parameters Hidden Units 1 2 3 4 Average

65,586 326 50 54 50 55 52

65,468 276 53 55 51 55 54

65,531 225 55 57 61 62 59

Features

65,456 200 57 57 59 62 59SS + Auto + Onset

SS + Onset

SS + Auto

SS

Figure 14. Recognition results for noisy test data; automobile noise source, mixed
with speech at signal-to-noise ratio of 10dB (NIST measurement method).



Figure 15 shows the effect of reducing the number of parameters in the MLP pattern
classifier on error rate, for the full 30-element feature vector. The table compares
recognizers with approximately 32,000 parameters (100 hidden units) and 16,000
parameters (50 hidden units) with the full 65,000 parameter recognition system.
The effect of parameterization on error performance is particularly important for
low-cost, low-power recognizer implementations.

The 200 speaker, 13-word isolated-word database consists of approximately 5 hours
of speech. The analog processing circuits in the multi-representation system are not
compensated for temperature drift; we omitted temperature compensation circuitry
from our prototype system for simplicity. Ambient temperature variation in our
laboratory over five hours results in a significant drift in auditory model responses.

To counter temperature drift problems during datataking for the experiments re-
ported above, several steps were taken. Data was presented to the chip ordered by
word: 200 speakers saying “1,” followed by 200 speakers saying “2,” ect. All chip
parameters were recalibrated between each set of 200 utterances; this recalibration
resets parameters with 5% accuracy. The complete dataset was taken several times,
on different days of the week and different times of the day, and pilot recogni-
tion experiments guided the choice of the final dataset. Within the limits of our
present hardware prototype, these error scores approximate the performance of a
temperature-compensated multi-representation system.

For comparison purposes, Figure 16 shows recognition performance for the multi-
representation system, if less care is taken to reduce temperature effects. In these
experiments, data was presented to the system ordered by speaker, not by word:
speaker 1 saying all 13 words, followed by speaker 2 saying all 13 words, ect. Re-
calibration of parameters occured every 10 speakers. The scores in this table reflect
“clean” testing and training data; the final line of Figure 12 is reproduced in Figure
16 to provide a direct comparison between the two datasets.

Parameters Hidden Units 1 2 3 4 Average

65,456 200 4.9 4.2 3.2 4.0 4.1

32,756 100 5.1 4.6 3.8 4.3 4.5

16,406 50 5.7 6.8 4.6 6.6 5.9

Features

SS + Auto + Onset

SS + Auto + Onset

SS + Auto + Onset

Figure 15. Recognition results showing the effect of the number of parameters in
the MLP-classifier on recognition results. Results are for clean testing data, using
the full feature vector (SS+Onset+Auto).

Parameters Hidden Units 1 2 3 4 Average

65,456 200 4.9 4.2 3.2 4.0 4.1

Order

By Word

By Speaker 65,456 200 6.6 4.9 6.0 7.7 6.3

Figure 16. Recognition results showing the effect of data presentation on recogni-
tion results. Results are for clean testing data, using the full feature vector.



7. DISCUSSION

The speech recognition performance of our multi-representation system, as shown
in Figure 12 and Figure 14, is inferior to J-RASTA-PLP, both for clean and noisy
test data. However, under high signal-to-noise conditions, the system provides
adequate performance (4.1% error) for many isolated-word applications. For spe-
cialized applications where a micropower speech feature extractor is required, the
signal processing technology used in our special-purpose analog-to-digital converter
chip is a competitive option. For these applications, the remaining challenges in-
clude the micropower implementation of the rest of the recognition system, and
the identification of end-user applications with sufficient market size to support the
development effort.

Apart from the micropower niche, however, analog auditory models are currently
uncompetitive with conventional front-end approaches for speech recognition appli-
cations. The success of auditory processing in biological systems, however, leaves us
hopeful that a sustained research effort in using analog auditory models for speech
recognition could result in recognition systems that perform significantly better
than conventional front-end approaches. We see the following areas as important
elements of such a research effort:

Improved Circuit Techniques.

The 4.1% error of the multi-representation system, for clean speech, is distinctly
inferior to the 1.8% error for J-RASTA-PLP on the same task. In contrast, studies
of software implementations of similar auditory models (Jackowoski et al., 1995)
typically show comparable performance in comparison with conventional front-ends.
The shortcomings of our analog circuit implementation, including limited signal-to-
noise ratio, limited dynamic range, and inaccuracy due to parameter variation and
temperature-related drift, may play a role in this difference.

The circuit technologies that implement the signal processing datapath shown in
Figure 2 date from the first silicon audition designs (Lyon and Mead, 1988). Several
generations of improved circuits and algorithms for silicon audition have been pub-
lished since these early designs, and research continues in several groups worldwide.
Many of these improvements focus on signal-to-noise, dynamic range, and improv-
ing uniformity across cochlea channels. These improvements may directly translate
to improvements in speech recognition scores, bringing silicon auditory models to
the performance of their software counterparts.

Parameter drift due to inadequate temperature compensation is another area
for improvement, the temperature compensation approach we use in our multi-
representation is primitive (Lazzaro et al., 1994), and parameter drift may be a
significant source of recognition error, as Figure 16 suggests. Improvements in this
area are straightforward, using techniques such as those described in (Vittoz, 1985).

Enhanced Auditory Models.

The cochlear model in our special-purpose analog-to-digital converter chip is an
extreme simplification of physiological cochlear processing; software-based auditory



models used in other speech recognition studies share most of these simplifications.
Key physiological cochlear response characteristics, including synchrony suppres-
sion, rate suppression, and temporal masking, are absent from these models; many
auditory theorists believe these characteristics underlie the robust coding of speech
in the presence of noise in biological auditory systems. Physiological cochleas are
deeply non-linear, and exhibit characteristics consistent with extensive channel-
specific automatic gain control: the auditory models used in speech recognition
experiments to date do not correctly model these characteristics. We believe that
more accurate cochlear models are an important part of future research in using
auditory representations for speech recognition.

In addition to improving the cochlear models, cleaner implementations of the com-
putations underlying the secondary representations in our system (correlation and
temporal adaptation) would add considerable robustness to these representations.
Also of interest is the addition of other secondary representations, in particular mod-
els of neural maps that code for temporal offsets, amplitude modulation, frequency
modulation, and quick temporal sequences typical of the voiced-onset transition in
speech. If multi-microphone recordings of speech databases are available, binaural
representations are another possible enhancement to the system.

Adapting Robust Techniques to Auditory Models.

A variety of techniques for robust feature extraction in noisy environments have been
developed for use with conventional front-ends for speech recognition. Adapting
these techniques to function with auditory representations is a promising avenue of
research.

One popular method of speech enhancement in noise is spectral subtraction (Boll,
1979). In this approach, a spectral model of the background noise in the recent past
is generated, and subtracted from the current input. Another method of speech
enhancement in noise, the J-RASTA-PLP system (Hermansky and Morgan, 1994;
Ma, 1995), uses information about the temporal properties of speech to filter speech
signal from background noise. Both approaches could be used in conjunction with
auditory representations.

Closing the Representation-Recognizer Gap.

As Figure 8 summarizes, auditory representations are a poor match to current
speech recognition systems. This paper makes no significant contribution towards
closing this “representation-recognizer gap”. Our straightforward approach of col-
lapsing the spike-based, high-dimensionality auditory representations (Hamming
windows and gross sub-sampling) destroys most of the unique coding aspects of
the auditory representation. Apart from choosing an MLP-based pattern classifier,
no advances in recognition algorithms were made to help close the gap from the
recognition side.

We believe that making significant contributions to closing this gap, both by mod-
ifying core speech recognizer technology, and by developing enhanced methods of
distilling information from high-dimensional, adaptively-sampled representations, is
essential to significantly improve speech recognition performance of auditory mod-



els.

Several research groups have done initial work on changing core speech recognition
technology to be more amenable to auditory representations. These methods take
different approaches to the problem; one recent publication uses the visual scene
analysis concept of occlusion as a starting point (Cooke et al., 1994), while other
recent work is motivated by the importance transient information in the speech
signal (Morgan et al., 1994). Attacking the problem from the representation side,
research in mapping in high-dimensional spaces into low-dimensional features has
been recently applied to cochlear models (Intrator, 1993).

8. SUMMARY

In this paper, we have evaluated the suitability of analog implementations of au-
ditory models, using an empirical approach: we integrated a multi-representation
analog auditory model with a speech recognition system, and measured the perfor-
mance of the system on a speaker-independent, telephone-quality 13-word recog-
nition task. The performance of the system is adequate for many applications,
but inferior to conventional approaches for front-end processing. In addition, the
auditory models show no advantages for robust speech recognition applications.
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