Chapter 3

Circuit Models of Nonlinear Inhibition

The silicon models of auditory localization and pitch perception, presented in Chapters 4 and 5, use inhibitory processing to improve the selectivity of their output representations. This chapter describes the inhibitory processing used in these projects.

Two general types of inhibition mediate activity in neural systems: subtractive inhibition, which sets a zero level for the computation, and multiplicative (nonlinear) inhibition, which regulates the gain of the computation. The circuit described in the chapter implements general nonlinear inhibition in its extreme form, known as winner-take-all. In addition to the projects in Chapters 4 and 5, the winner-take-all circuit has been used successfully in a model of visual stereopsis (Mahowald and Delbruck, 1989).

The chapter also describes a modification to this global winner-take-all circuit, which computes local nonlinear inhibition. The circuit allows multiple winners in the network, and is well suited for use in systems that represent a feature space topographically and that process several features in parallel. The research in this chapter was done in collaboration with Sylvie Ryckebusch, M. A. Mahowald, and Carver Mead; parts of this chapter were originally published in (Lazzaro et al., 1988).

3.1 The Winner-Take-All Circuit

Figure 3.1 is a schematic diagram of the winner-take-all circuit. Each neuron receives a unidirectional current input I_{k}; the output voltages $V_{1} \ldots V_{n}$ represent the results of the winner-take-all computation. A single wire, associated with the potential V_{c}, computes the inhibition for the entire circuit; for an n-neuron
circuit, this wire is $O(n)$ long. To compute the global inhibition, each neuron k contributes a current onto this common wire, using transistor $T_{2_{k}}$. To apply this global inhibition locally, each neuron responds to the common wire voltage V_{c}, using transistor $T_{1_{k}}$. This computation is continuous in time; no clocks are used. The circuit exhibits no hysteresis, and operates with a time constant related to the size of the largest input. The output representation of the circuit is not binary; the winning output encodes the logarithm of its associated input.

A static and dynamic analysis of the two-neuron circuit illustrates these properties. Figure 3.2 shows a schematic diagram of a two-neuron winner-takeall circuit. To understand the behavior of the circuit, we first consider the input condition $I_{1}=I_{2} \equiv I_{m}$. Transistors $T_{1_{1}}$ and $T_{1_{2}}$ have identical potentials at gate and source, and are both sinking I_{m}; thus, the drain potentials V_{1} and V_{2} must be equal. Transistors $T_{2_{1}}$ and $T_{2_{2}}$ have identical source, drain, and gate potentials, and therefore must sink the identical current $I_{c_{1}}=I_{c_{2}}=I_{c} / 2$. In the subthreshold region of operation, the equation $I_{m}=I_{o} \exp \left(V_{c} / V_{o}\right)$ describes transistors $T_{1_{1}}$ and $T_{1_{2}}$, where I_{o} is a fabrication parameter, and $V_{o}=k T / q \kappa$. Likewise, the equation $I_{c} / 2=I_{o} \exp \left(\left(V_{m}-V_{c}\right) / V_{o}\right)$, where $V_{m} \equiv V_{1}=V_{2}$, describes transistors $T_{2_{1}}$ and $T_{2_{2}}$. Solving for $V_{m}\left(I_{m}, I_{c}\right)$ yields

$$
\begin{equation*}
V_{m}=V_{o} \ln \left(\frac{I_{m}}{I_{o}}\right)+V_{o} \ln \left(\frac{I_{c}}{2 I_{o}}\right) \tag{3.1}
\end{equation*}
$$

Thus, for equal input currents, the circuit produces equal output voltages; this behavior is desirable for a winner-take-all circuit. In addition, the output voltage V_{m} logarithmically encodes the magnitude of the input current I_{m}.

The input condition $I_{1}=I_{m}+\delta_{i}, I_{2}=I_{m}$ illustrates the inhibitory action of the circuit. Transistor $T_{1_{1}}$ must sink δ_{i} more current than in the previous example; as a result, the gate voltage of $T_{1_{1}}$ rises. Transistors $T_{1_{1}}$ and

Figure 3.1. Schematic diagram of the winner-take-all circuit. Each neuron receives a unidirectional current input I_{k}; the output voltages $V_{1} \ldots V_{n}$ represent the result of the winner-take-all computation. If $I_{k}=\max \left(I_{1} \ldots I_{n}\right)$, then V_{k} is a logarithmic function of I_{k}; if $I_{j} \ll I_{k}$, then $V_{j} \approx 0$.

Figure 3.2. Schematic diagram of a two-neuron winner-take-all circuit.
$T_{1_{2}}$ share a common gate, however; thus, $T_{1_{2}}$ must also sink $I_{m}+\delta_{i}$. But only I_{m} is present at the drain of $T_{1_{2}}$. To compensate, the drain voltage of $T_{1_{2}}, V_{2}$, must decrease. For small $\delta_{i} \mathrm{~s}$, the Early effect decreases the current through $T_{1_{2}}$, decreasing V_{2} linearly with δ_{i}. For large $\delta_{i} \mathrm{~s}, T_{1_{2}}$ must leave saturation, driving V_{2} to approximately 0 V . As desired, the output associated with the smaller input diminishes. For large $\delta_{i} \mathrm{~s}, I_{c_{2}} \approx 0$, and $I_{c_{1}} \approx I_{c}$. The equation $I_{m}+\delta_{i}=$ $I_{o} \exp \left(V_{c} / V_{o}\right)$ describes transistor T_{1}, and the equation $I_{c}=I_{o} \exp \left(\left(V_{1}-V_{c}\right) / V_{o}\right)$ describes transistor $T_{2_{1}}$. Solving for V_{1} yields

$$
\begin{equation*}
V_{1}=V_{o} \ln \left(\frac{I_{m}+\delta_{i}}{I_{o}}\right)+V_{o} \ln \left(\frac{I_{c}}{I_{o}}\right) \tag{3.2}
\end{equation*}
$$

The winning output encodes the logarithm of the associated input. The symmetrical circuit topology ensures similar behavior for increases in I_{2} relative to I_{1}.

Equation 3.2 predicts the winning response of the circuit; a more complex expression, derived in Appendix 3A, predicts the losing and crossover response of the circuit. Figure 3.3 is a plot of this analysis, fit to experimental data. Figure 3.4 shows the wide dynamic range and logarithmic properties of the circuit; the experiment in Figure 3.3 is repeated for several values of I_{2}, ranging over four orders of magnitude.

The conductance of transistors $T_{1_{1}}$ and $T_{1_{2}}$ determines the losing response of the circuit. The Early voltage, V_{e}, is a measure of the conductance of a saturated MOS transistor. The expression

$$
\begin{equation*}
V_{e}=L \frac{\partial V_{d}}{\partial L} \tag{3.3}
\end{equation*}
$$

defines the Early voltage, where V_{d} is the drain potential of a transistor, and L is the channel length of a transistor. Thus, the width of the losing response

Figure 3.3. Experimental data (circles) and theoretical statements (solid lines) for a twoneuron winner-take-all circuit. I_{1}, the input current of the first neuron, is swept about the value of I_{2}, the input current of the second neuron; neuron voltage outputs V_{1} and V_{2} are plotted versus normalized input current.

Figure 3.4. The experiment of Figure 3.3 is repeated for several values of I_{2}; experimental data of output voltage response are plotted versus absolute input current on a log scale. The output voltage $V_{1}=V_{2}$ is highlighted with a circle for each experiment. The dashed line is a theoretical expression confirming logarithmic behavior over four orders of magnitude (Equation 3.1).
of the circuit depends on the channel length of transistors $T_{1_{1}}$ and $T_{1_{2}}$. Figure 3.3 shows data for a circuit where the channel length of transistors $T_{1_{1}}$ and $T_{1_{2}}$ is $13.5 \mu \mathrm{~m}$. Figure 3.5 shows data for a circuit with a wider losing response; in this circuit, the channel length for transistors $T_{1_{1}}$ and $T_{1_{2}}$ is $3 \mu \mathrm{~m}$, the smallest allowable in the fabrication technology used.

Increasing the channel length of transistors $T_{1_{1}}$ and $T_{1_{2}}$ narrows the losing response of the circuit; alternatively, circuit modification also can narrow the losing response. The circuit shown in Figure 3.6 approximately halves the width of the original losing response, through source degeneration of transistors $T_{1_{1}}$ and $T_{1_{2}}$ by the added diode-connected transistors $T_{3_{1}}$ and $T_{3_{2}}$. Figure 3.7 shows experimental data for this modified circuit.

3.2 Time Response of the Winner-Take-All Circuit

A good winner-take-all circuit should be stable, and should not exhibit damped oscillations (ringing) in response to input changes. This section explores these dynamic properties of our winner-take-all circuit, and predicts the temporal response of the circuit. Figure 3.8 shows the two-neuron winner-take-all circuit, with capacitances added to model dynamic behavior.

Appendix 3B shows a small-signal analysis of this circuit. This analysis shows that the circuit is stable and does not ring if $I_{c}>4 I\left(C_{c} / C\right)$, where $I_{1} \approx I_{2} \approx I$. Figure 3.9 compares this bound with experimental data.

If $I_{c}>4 I\left(C_{c} / C\right)$, the circuit exhibits first-order behavior. The time constant $C V_{o} / I$ sets the dynamics of the winning neuron, where $V_{o}=k T / q \kappa \approx 40 \mathrm{~m} V$. The time constant $C V_{e} / I$ sets the dynamics of the losing neuron, where $V_{e} \approx$ 50 V . Figure 3.10 compares these predictions with experimental data, for several variants of the winner-take-all circuit.

Figure 3.5. Experimental data (circles) and theoretical statements (solid lines) for a twoneuron winner-take-all circuit with a channel length for transistors $T_{1_{1}}$ and $T_{1_{2}}$ of $3 \mu \mathrm{~m}$. The dotted lines show the losing response for the circuit used in Figure 3.3, which has a channel length for transistors $T_{1_{1}}$ and $T_{1_{2}}$ of $13.5 \mu \mathrm{~m}$.

Figure 3.6. Schematic diagram of a two-neuron winner-take-all circuit, modified to produce a narrower losing response.

Figure 3.7. Experimental data (circles) and theoretical statements (solid lines) for a twoneuron winner-take-all circuit, modified to produce a narrower losing response. The dotted lines show losing response for the circuit used in Figure 3.4.

Figure 3.8. Schematic diagram of a two-neuron winner-take-all circuit, with capacitances added for dynamic analysis. C is a large MOS capacitor added to each neuron for smoothing; C_{c} models the parasitic capacitance contributed by the gates of T_{11} and T_{12}, the drains of T_{21} and T_{22}, and the interconnect.

Figure 3.9. Experimental data (circles) and theoretical statements (solid line) for a twoneuron winner-take-all circuit, showing the smallest I_{c}, for a given I, necessary for a first-order response to a small-signal step input.

Figure 3.10. Experimental data (symbols) and theoretical statements (solid lines) for a twoneuron winner-take-all circuit, showing the time constant of the first-order response to a smallsignal step input. The winning response (filled circles) and losing response (triangles) of a winner-take-all circuit with the static response of Figure 3.3 are shown; the time constants differ by several orders of magnitude. Losing responses for winner-take-all circuits with the static responses shown in Figure 3.5 (squares) and in Figure 3.7 (open circles) are also shown, demonstrating the effect of the width of static response on dynamic behavior.

3.3 The Local Nonlinear Inhibition Circuit

The winner-take-all circuit in Figure 3.1, as previously explained, locates the largest input to the circuit. Figure 3.11 shows this behavior. Figure 3.11(a) is the spatial input to a winner-take-all circuit with 16 neurons, with input 8 much higher than all other inputs. Figure 3.11 (b) shows the circuit response to this input; only neuron 8 has significant response.

Certain applications require a gentler form of nonlinear inhibition. Sometimes, a circuit that can represent multiple intensity scales is necessary. Without circuit modification, the winner-take-all circuit in Figure 3.1 can perform this task. Appendix 3C explains this mode of operation.

Other applications require a local winner-take-all computation, with each winner having influence over only a limited spatial area. Figure 3.11(c) shows the desired computation. As in Figure 3.11(b), neuron 8 has the largest response in the circuit. However, neuron 8 suppresses the output of only nearby neurons; neurons far from neuron 8 have significant responses, encoding their input signals.

Figure 3.12 shows a circuit that computes the local winner-take-all function. The circuit is identical to the original winner-take-all circuit, except that each neuron connects to its nearest neighbors with a nonlinear resistor circuit (Mead, 1989). Each resistor conducts a current I_{r} in response to a voltage ΔV across it, where

$$
\begin{equation*}
I_{r}=I_{s} \tanh \left(\Delta V /\left(2 V_{o}\right)\right) . \tag{3.4}
\end{equation*}
$$

I_{s}, the saturating current of the resistor, is a controllable parameter. The current source I_{c}, present in the original winner-take-all circuit, is distributed between the resistors in the local winner-take-all circuit.

Figure 3.11. Comparison of idealized winner-take-all spatial response and the desired local winner-take-all response. The horizontal axis of each plot represents spatial position in a 16neuron network. a. The plot shows a spatial impulse function, used as input to compare the two concepts. The vertical axis shows the input current to each neuron, with $I_{8} \gg I_{k \neq 8}$. b. The plot shows the winner-take-all response. c. The plot shows the local winner-take-all response.

Figure 3.12. Schematic diagram of a section of the local winner-take-all circuit. Each neuron i receives a unidirectional current input I_{i}; the output voltages V_{i} represent the result of the local winner-take-all computation.

To understand the operation of the local winner-take-all circuit, we consider the circuit response to a spatial impulse, defined as $I_{k} \gg I$, where $I \equiv I_{i \neq k}$. $I_{k} \gg I_{k-1}$ and $I_{k} \gg I_{k+1}$, so $V_{c_{k}}$ is much larger than $V_{c_{k-1}}$ and $V_{c_{k+1}}$, and the resistor circuits connecting neuron k with neuron $k-1$ and neuron $k+1$ saturate. Each resistor sinks I_{s} current when saturated; transistor $T_{2_{k}}$ thus conducts $2 I_{s}+I_{c}$ current. In the subthreshold region of operation, the equation $I_{k}=I_{o} \exp \left(V_{c_{k}} / V_{o}\right)$ describes transistor $T_{1_{k}}$, and the equation $2 I_{s}+I_{c}=$ $I_{o} \exp \left(\left(V_{k}-V_{c_{k}}\right) / V_{o}\right)$ describes transistor $T_{2_{k}}$. Solving for V_{k} yields

$$
\begin{equation*}
V_{k}=V_{o} \ln \left(\left(2 I_{s}+I_{c}\right) / I_{o}\right)+V_{o} \ln \left(I_{k} / I_{o}\right) . \tag{3.5}
\end{equation*}
$$

As in the original winner-take-all circuit, the output of a winning neuron encodes the logarithm of that neuron's associated input.

As mentioned, the resistor circuit connecting neuron k with neuron $k-1$ sinks I_{s} current. The current sources I_{c} associated with neurons $k-1, k-2, \ldots$ must supply this current. If the current source I_{c} for neuron $k-1$ supplies part of this current, then the transistor $T_{2_{k-1}}$ carries no current, and the neuron output V_{k-1} approaches zero. Similar reasoning applies to neurons $k+1, k+2, \ldots$ In this way, a winning neuron inhibits its neighboring neurons.

This inhibitory action does not extend throughout the network. Neuron k needs only I_{s} current from neurons $k-1, k-2, \ldots$ Thus, neurons sufficiently distant from neuron k maintain the service of their current source I_{c}, and the outputs of these distant neurons can be active. Since, for a spatial impulse, all neurons $k-1, k-2, \ldots$ have an equal input current I, all distant neurons have the equal output

$$
\begin{equation*}
V_{i \ll k}=V_{o} \ln \left(I_{c} / I_{o}\right)+V_{o} \ln \left(I / I_{o}\right) . \tag{3.6}
\end{equation*}
$$

Similar reasoning applies for neurons $k+1, k+2, \ldots$.

The relative values of I_{s} and I_{c} determine the spatial extent of the inhibitory action. Figure 3.13 shows the spatial impulse response of the local winner-takeall circuit, for different settings of I_{s} / I_{c}.

3.4 Discussion

The circuits described in this chapter use the full analog nature of MOS devices to realize an interesting class of neural computations efficiently. The circuits exploit the physics of the medium in many ways. The winner-take-all circuit uses a single wire to compute and communicate inhibition for the entire circuit. Transistor $T_{1_{k}}$ in the winner-take-all circuit uses two physical phenomena in its computation: its exponential current function encodes the logarithm of the input, and the finite conductance of the transistor defines the losing output response. As evolution exploits all the physical properties of neural devices to optimize system performance, designers of synthetic neural systems should strive to harness the full potential of the physics of their media.

Figure 3.13. Experimental data showing the spatial impulse response of the local winner-take-all circuit, for values of I_{s} / I_{c} ranging over a factor of 12.7. Wider inhibitory responses correspond to larger ratios. For clarity, the plots are vertically displaced in 0.25 V increments.

Appendix 3A

Static Response of the Winner-Take-All Circuit

Figure 3.3 compares data from the two-neuron winner-take-all circuit with a closed-form theoretical statement describing the losing and crossover response of the circuit. This appendix derives that theoretical statement.

Figure 3A. 1 shows a small-signal circuit model of the two-neuron winner-take-all circuit (Figure 3.2). For a particular operating point $\left[I_{1}, I_{2}, I_{c_{1}}, I_{c_{2}}\right]$, the model shows the effect of a small change in I_{1}, denoted i_{1}, on the circuit voltages V_{1}, V_{2}, and V_{c}, indicated by the small-signal voltages v_{1}, v_{2}, and v_{c}. In this model, a linear resistor $r_{i_{j}}$, in parallel with a linear dependent current source, with a conductance $g_{i_{j}}$, replaces each transistor $T_{i_{j}}$ from Figure 3.2. For a particular operating point in subthreshold, the small-signal parameters are

$$
\begin{array}{llll}
g_{1_{1}}=I_{1} / V_{o}, & g_{2_{1}}=I_{c_{1}} / V_{o}, & r_{1_{1}}=V_{e} / I_{1}, & r_{2_{1}}=V_{e} / I_{c_{1}} \tag{3A.1}\\
g_{1_{2}}=I_{2} / V_{o}, & g_{2_{2}}=I_{c_{2}} / V_{o}, & r_{1_{2}}=V_{e} / I_{2}, & r_{2_{2}}=V_{e} / I_{c_{2}}
\end{array}
$$

where V_{e}, the Early voltage, is a measure of transistor resistance, and $V_{o}=$ $k T / q \kappa$. This small-signal model is a linear system, which we can solve analytically using conventional techniques; applying the approximation $V_{e}+V_{o} \approx$ V_{e} to the solution yields the simplified equations

$$
\begin{align*}
& \frac{v_{1}}{i_{1}}=\left(1 / I_{1}\right)\left(V_{o}+V_{e}\left(I_{c_{2}} / I_{c}\right)\right) \\
& \frac{v_{2}}{i_{1}}=-V_{e}\left(1 / I_{1}\right)\left(I_{c_{1}} / I_{c}\right) \tag{3A.2}
\end{align*}
$$

Figure 3A.1. Small-signal model of the two-neuron winner-take-all circuit.

Note that both small-signal and large-signal quantities appear in Equation
3A.2. We can view the small-signal quantities as differential elements of largesignal quantities; as a result, we can rewrite Equation 3A. 2 as the pair of nonlinear differential equations

$$
\begin{align*}
& \frac{d V_{1}}{d I_{1}}=\left(1 / I_{1}\right)\left(V_{o}+V_{e}\left(I_{c_{2}} / I_{c}\right)\right) \\
& \frac{d V_{2}}{d I_{1}}=-V_{e}\left(1 / I_{1}\right)\left(I_{c_{1}} / I_{c}\right) \tag{3A.3}
\end{align*}
$$

Solving this pair of nonlinear differential equations yields a complete description of circuit response. We begin by eliminating $I_{c_{1}}$ and $I_{c_{2}}$ from the equations. Referring to Figure 3.2, the equations

$$
\begin{align*}
& I_{c_{1}}=I_{o} \exp \left(\left(V_{1}-V_{c}\right) / V_{o}\right), \tag{3A.4}\\
& I_{c_{2}}=I_{o} \exp \left(\left(V_{2}-V_{c}\right) / V_{o}\right)
\end{align*}
$$

describe transistors $T_{2_{1}}$ and $T_{2_{2}}$. From Kirchoff's current law, we know that $I_{c_{1}}+I_{c_{2}}=I_{c}$; substitution of Equation 3A.4 into this equation yields the expression

$$
\begin{equation*}
I_{c}=I_{o} \exp \left(\left(V_{1}-V_{c}\right) / V_{o}\right)+I_{o} \exp \left(\left(V_{2}-V_{c}\right) / V_{o}\right) . \tag{3A.5}
\end{equation*}
$$

Dividing Equation 3A. 4 by Equation 3A. 5 eliminates V_{c}, leaving, after rearrangement,

$$
\begin{align*}
& I_{c_{1}} / I_{c}=\frac{1}{1+\exp \left(\left(V_{2}-V_{1}\right) / V_{o}\right)} \tag{3A.6}\\
& I_{c_{2}} / I_{c}=\frac{1}{1+\exp \left(\left(V_{1}-V_{2}\right) / V_{o}\right)} .
\end{align*}
$$

These expressions fit nicely into Equation 3A.3, eliminating $I_{c_{1}}$ and $I_{c_{2}}$, and leaving a set of differential equations involving only V_{1}, V_{2}, and I_{1} :

$$
\begin{align*}
& \frac{d V_{1}}{d I_{1}}=\left(1 / I_{1}\right)\left(V_{o}+V_{e}\left(\frac{1}{1+\exp \left(\left(V_{1}-V_{2}\right) / V_{o}\right)}\right)\right) \tag{A7a}\\
& \frac{d V_{2}}{d I_{1}}=-V_{e}\left(1 / I_{1}\right)\left(\frac{1}{1+\exp \left(\left(V_{2}-V_{1}\right) / V_{o}\right)}\right) \tag{A7b}
\end{align*}
$$

Equation 3A.7a contains V_{2} only in the subexpression

$$
\begin{equation*}
\frac{1}{1+\exp \left(\left(V_{1}-V_{2}\right) / V_{o}\right)} \tag{3A.8a}
\end{equation*}
$$

Equation 3A.7b contains V_{1} only in the subexpression

$$
\begin{equation*}
\frac{1}{1+\exp \left(\left(V_{2}-V_{1}\right) / V_{o}\right)} \tag{3A.8b}
\end{equation*}
$$

These subexpressions are both Fermi functions of the difference $V_{1}-V_{2}$. For $V_{1}-V_{2} \gg V_{o}$, the value of the subexpression 3A.8a is approximately 0 , whereas the value of the subexpression 3 A .8 b is approximately 1 ; for $V_{2}-V_{1} \gg V_{o}$, the value of the subexpression 3A.8a is approximately 1 , whereas the value of the subexpression 3A.8b is approximately 0 . In the region $V_{1} \approx V_{2}$, we can assume that V_{1} and V_{2} are both changing with the same magnitude of slope relative to I_{1}. We can write this approximation as $V_{1}-V_{2} \approx 2\left(V_{1}-V_{m}\right)$ and $V_{2}-V_{1} \approx 2\left(V_{2}-V_{m}\right)$, where, from the qualitative analysis in the chapter, $V_{m} \equiv V_{1}=V_{2}$ when $I_{1}=I_{2} \equiv I_{m}$. We can use this approximation to decouple Equations 3A.7a and 3A.7b, producing

$$
\begin{align*}
& \frac{d V_{1}}{d I_{1}}=\left(1 / I_{1}\right)\left(V_{o}+V_{e}\left(\frac{1}{1+\exp \left(2\left(V_{1}-V_{m}\right) / V_{o}\right)}\right)\right) \\
& \frac{d V_{2}}{d I_{1}}=-V_{e}\left(1 / I_{1}\right)\left(\frac{1}{1+\exp \left(2\left(V_{2}-V_{m}\right) / V_{o}\right)}\right) \tag{3A.9}
\end{align*}
$$

We can solve these equations by straightforward integration, yielding, after application of the approximation $V_{e}+V_{o} \approx V_{e}$,

$$
\begin{align*}
& \ln \left(I_{1} / I_{m}\right)=\frac{\left(V_{1}-V_{m}\right)}{V_{e}}+\frac{1}{2} \ln \left(1+\left(V_{o} / V_{e}\right) \exp \left(2\left(V_{1}-V_{m}\right) / V_{o}\right)\right) \tag{3A10a}\\
& \ln \left(I_{1} / I_{m}\right)=\frac{\left(V_{m}-V_{2}\right)}{V_{e}}+\frac{1}{2}\left(V_{o} / V_{e}\right)\left(1-\exp \left(2\left(V_{2}-V_{m}\right) / V_{o}\right)\right) \tag{3A10b}
\end{align*}
$$

Equation 3A.10a predicts the value of I_{1} for a given value of V_{1}, whereas Equation 3A.10b predicts the value of I_{1} for a given value of V_{2}; in this way, these equations are a closed-form approximation of circuit response. To understand the behavior of the circuit, and to evaluate the effect of the approximations $V_{1}-V_{2} \approx 2\left(V_{1}-V_{m}\right)$ and $V_{2}-V_{1} \approx 2\left(V_{2}-V_{m}\right)$, we can simplify Equations 3A.10a and 3.A10b for three regions of interest: $V_{1} \approx V_{2} \approx V_{m}$, $V_{1} \gg V_{m}$ while $V_{2} \ll V_{m}$, and $V_{1} \ll V_{m}$ while $V_{2} \gg V_{m}$.

First consider the condition $V_{1} \approx V_{2} \approx V_{m}$. In this case, $\left|V_{1}-V_{2}\right| \rightarrow 0$, $I_{1} / I_{m} \rightarrow 1$, and we can linearize the transcendental functions in Equations 3A.10a and 3A.10b, yielding the simpler relations

$$
\begin{align*}
& \left.V_{1}=\left(V_{e} / 2\right)\left(\left(I_{1} / I_{m}\right)-1\right)\right)+V_{m}, \tag{3A.11}\\
& V_{2}=\left(V_{e} / 2\right)\left(1-\left(I_{1} / I_{m}\right)\right)+V_{m}
\end{align*}
$$

In this region, V_{1} and V_{2} are a linear function of I_{1}, with a slope of $\pm V_{e} /\left(2 I_{m}\right)$.
Next, consider the condition $V_{1} \gg V_{m}$ while $V_{2} \ll V_{m}$, valid when $I_{1}>I_{m}$. In Equation 3A.10b, $V_{2} \ll V_{m}$ implies $\exp \left(2\left(V_{2}-V_{m}\right) / V_{o}\right) \rightarrow 0$. This simplification yields, after rearrangement,

$$
\begin{equation*}
V_{2}=V_{o} / 2+V_{m}-V_{e} \ln \left(I_{1} / I_{m}\right) \tag{3A.12}
\end{equation*}
$$

If we use the notation $I_{1}=I_{m}+\delta_{i}$, as in the earlier qualitative analysis, we can rewrite the subexpression $\ln \left(I_{1} / I_{m}\right)$ as $\ln \left(1+\left(\delta_{i} / I_{m}\right)\right)$, which we can approximate as δ_{i} / I_{m} for small δ_{i} / I_{m}, yielding the simplified result

$$
\begin{equation*}
V_{2}=V_{o} / 2+V_{m}-\left(V_{e} / I_{m}\right) \delta_{i} \tag{3A.13}
\end{equation*}
$$

Thus, in this region, V_{2} decreases linearly with δ_{i}, with a slope of V_{e} / I_{m}, which is twice as large as in the previous condition.

We can similarly derive a simplified expression for V_{1}, for the same condition $V_{1} \gg V_{m}$ while $V_{2} \ll V_{m}$. In Equation 3A.10a, $V_{1} \gg V_{m}$ implies $\left(V_{o} / V_{e}\right) \exp \left(2\left(V_{1}-V_{m}\right) / V_{o}\right) \gg 1$. This approximation yields, after rearrangement,

$$
\begin{equation*}
V_{1}=V_{o} \ln \left(I_{1} / I_{m}\right)+\left(V_{o} / 2\right) \ln \left(V_{e} / V_{o}\right)+V_{m} \tag{3A.14}
\end{equation*}
$$

For this condition, as predicted by Equation 3.2 in the chapter, V_{1} is a logarithmic function of I_{1}. However, when does the approximation $\left(V_{o} / V_{e}\right) \exp \left(2\left(V_{1}-V_{m}\right) / V_{o}\right) \gg 1$ hold? This inequality, when rearranged, yields the constraint

$$
\begin{equation*}
\left(V_{1}-V_{m}\right) \gg\left(V_{o} / 2\right) \ln \left(V_{e} / V_{o}\right) \tag{3A.15}
\end{equation*}
$$

Therefore, for a typical fabrication process, $V_{1}-V_{m}$ must be much greater than 0.15 V for Equation 3A. 14 to hold! This error stems from the central approximation $V_{1}-V_{2} \approx 2\left(V_{1}-V_{m}\right)$, which is valid for only $V_{1}-V_{2} \leq V_{o}$. Thus, for this region of operation, Equation 3.2 best predicts circuit behavior.

Finally, we consider the condition $V_{1} \ll V_{m}$ while $V_{2} \gg V_{m}$, valid when $I_{1}<I_{m}$. In Equation 3A.10a, $V_{1} \ll V_{m}$ implies $\left(V_{o} / V_{e}\right) \exp \left(2\left(V_{1}-V_{m}\right) / V_{o}\right) \rightarrow 0$. This simplification yields, after rearrangement,

$$
\begin{equation*}
V_{1}=V_{m}+V_{e} \ln \left(I_{1} / I_{m}\right) \tag{3A.16}
\end{equation*}
$$

If we use the notation $I_{1}=I_{m}-\delta_{i}$, as in the earlier analysis, we can rewrite the subexpression $\ln \left(I_{1} / I_{m}\right)$ as $\ln \left(1-\left(\delta_{i} / I_{m}\right)\right)$, which we can approximate as $-\delta_{i} / I_{m}$ for small $\left|-\delta_{i} / I_{m}\right|$, yielding the simplified result

$$
\begin{equation*}
V_{1}=V_{m}-\left(V_{e} / I_{m}\right) \delta_{i} \tag{3A.17}
\end{equation*}
$$

Thus, in this region, V_{1} decreases linearly with δ_{i}, with a slope of V_{e} / I_{m}. The losing responses for V_{1} and V_{2} are thus identical.

We can similarly derive a simplified expression for V_{2}, for the same condition $V_{1} \ll V_{m}$ while $V_{2} \gg V_{m}$. For Equation 3A.10b, $V_{2} \gg V_{m}$ implies $\exp \left(2\left(V_{2}-\right.\right.$ $\left.\left.V_{m}\right) / V_{o}\right) \gg 1$. This approximation yields, after rearrangement,

$$
\begin{equation*}
\ln \left(I_{1} / I_{m}\right)=\left(V_{m}-V_{2}\right) / V_{e}-(1 / 2)\left(V_{o} / V_{e}\right) \exp \left(2\left(V_{2}-V_{m}\right) / V_{o}\right) \tag{3A.18}
\end{equation*}
$$

As $V_{2}-V_{m}$ increases, the right side of this equation grows exponentially large and negative, forcing I_{1} to grow closer and closer to zero; thus, V_{2} is constant with I_{1}. However, the poor approximation $V_{2}-V_{1} \approx 2\left(V_{2}-V_{m}\right)$ for $V_{2}-V_{1} \geq V_{o}$ stunts this exponential growth. The qualitative analysis in the chapter predicts this constant value accurately, as

$$
\begin{equation*}
V_{2}=V_{o} \ln \left(\frac{I_{m}}{I_{o}}\right)+V_{o} \ln \left(\frac{I_{c}}{I_{o}}\right) . \tag{3A.19}
\end{equation*}
$$

In summary, Equations 3A.10a and 3A.10b predict the losing and crossover response of the circuit, whereas Equations 3.2 and 3A. 19 predict the winning response of the circuit. Figure 3.4 is a plot of this analysis, fitted to experimental data. Figure 3A. 2 expands the crossover region of Figure 3.4, showing the crossover region between losing and winning analyses. The theoretical predictions in Figure 3.5 and Figure 3.7 also use this analysis, with altered values of V_{e}.

Figure 3A.2. Experimental data (circles) and theoretical statements (solid lines) for a twoneuron winner-take-all circuit in the crossover region.

Appendix 3B

Dynamic Response of the Winner-Take-All Circuit

In the chapter, we presented theoretical predictions of the time response of the winner-take-all circuit; in Figure 3.9 and 3.10, we compared these predictions with experimental data. In this appendix, we derive these theoretical predictions.

Figure 3.8 in the chapter shows a schematic diagram for a two-neuron winner-take-all circuit, with capacitances added to model dynamic behavior. Figure 3B. 1 shows a small-signal circuit model for this circuit. For a particular operating point $\left[I_{1}, I_{2}, I_{c_{1}}, I_{c_{2}}\right]$, the model shows the effect of a small change in I_{1}, denoted by i_{1}, on the circuit voltages V_{1}, V_{2}, and V_{c}, indicated by the small-signal voltages v_{1}, v_{2}, and v_{c}. In this model, a linear resistor $r_{i_{j}}$, in parallel with a linear dependent current source, with a conductance $g_{i_{j}}$, replaces each transistor $T_{i_{j}}$ from Figure 3.2. For a particular operating point in subthreshold, the smallsignal parameters are

$$
\begin{array}{llll}
g_{1_{1}}=I_{1} / V_{o}, & g_{2_{1}}=I_{c_{1}} / V_{o}, & r_{1_{1}}=V_{e} / I_{1}, & r_{2_{1}}=V_{e} / I_{c_{1}}, \\
g_{1_{2}}=I_{2} / V_{o}, & g_{2_{2}}=I_{c_{2}} / V_{o}, & r_{1_{2}}=V_{e} / I_{2}, & r_{2_{2}}=V_{e} / I_{c_{2}}, \tag{3B.1}
\end{array}
$$

where V_{e}, the Early voltage, is a measure of transistor resistance, and $V_{o}=$ $k T / q \kappa$. This small-signal circuit model is a linear system, which we can solve analytically using conventional techniques. The resulting solution, unfortunately, is a function of the unsolved large signal $I_{c_{1}}$ and $I_{c_{2}}$. However, for the input conditions $I_{2}=I_{m}$ and $I_{1}=I_{m}+\delta_{i}$, we can reasonably make the approximations $I_{c_{1}} \approx I_{c}$ and $I_{c_{2}} \approx 0$ for relatively small δ_{i}, due to the exponential dependence of T_{21} and T_{22} on V_{1} and V_{2}. Using these approximations, we can express the smallsignal voltages v_{1} and v_{2} as linear functions of the small-signal input current i_{1}, as

$$
\begin{equation*}
\frac{v_{1}}{i_{1}}=\left(\frac{V_{o}}{I_{1}}\right) \frac{\left(\left(C_{c} V_{o} / I_{c}\right) s+1\right)}{(s /(a+b)+1)(s /(a-b)+1)} \tag{3B.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{v_{2}}{i_{1}}=-\left(\frac{V_{e}}{I_{1}}\right) \frac{1}{\left(\left(C V_{e} / I_{2}\right) s+1\right)(s /(a+b)+1)(s /(a-b)+1)} \tag{3B.3}
\end{equation*}
$$

where

$$
\begin{equation*}
a=\frac{I_{1}}{2 C V_{e}}+\frac{I_{c}}{2 C_{c} V_{o}} \tag{3B.4}
\end{equation*}
$$

and

$$
\begin{equation*}
b=\sqrt{\left(\frac{I_{1}}{2 C V_{e}}\right)^{2}+\left(\frac{I_{c}}{2 C_{c} V_{o}}\right)^{2}-\left(\frac{I_{c} I_{1}}{C C_{c} V_{o}^{2}}\right)} . \tag{3B.5}
\end{equation*}
$$

If b is an imaginary number, the circuit has complex poles, and exhibits undesirable ringing behavior. If $I_{c}>4 I_{1}\left(C_{c} / C\right)$, then b is real, and ringing does not occur. Figure 3.9 in the chapter compares experimental data with this inequality.

When b is real, the circuit exhibits first-order behavior. We can simplify Equations 3B. 2 and 3B.3, and show that the first-order time constant for V_{1} is $C V_{o} / I$, and the first-order time constant for V_{2} is $C V_{e} / I$, where $I_{1} \approx I_{2} \equiv$ I. Figure 3.10 in the chapter compares experimental data with these time constants.

Figure 3B.1. Small-signal model of the two-neuron winner-take-all circuit, with capacitances added to model dynamic behavior.

Appendix 3C

Representation of Multiple Intensity Scales

This appendix explains a regime of operation of the winner-take-all circuit that represents multiple input intensity scales in the output, while still functioning as an inhibitory circuit.

Consider an n-neuron winner-take-all circuit, with input currents $I_{1} \gg I_{2} \gg$ $\ldots \gg I_{n}$. As shown in Equation 3.1 in the chapter, the output voltage V_{1} is

$$
\begin{equation*}
V_{1}=V_{o} \ln \left(\frac{I_{1}}{I_{o}}\right)+V_{o} \ln \left(\frac{I_{c}}{I_{o}}\right) \tag{3C.1}
\end{equation*}
$$

while $V_{2} \ldots V_{n}$ are approximately zero. The output does not represent the input ordering $I_{2} \gg I_{3} \gg \ldots>I_{n}$; the largest input wins, and all other inputs lose. We can operate the circuit in another regime, however, which allows inputs $I_{1} \ldots I_{k}$ to win, and inputs $I_{k+1} \ldots I_{n}$ to lose, where the magnitude of I_{k} is under external control. Voltage outputs $V_{1} \ldots V_{k-1}$ are now binary representations, whereas V_{k} maintains a logarithmic encoding of the input current I_{k}.

In our previous analysis in the chapter, we used ideal current sources to represent $I_{1} \ldots I_{n}$. In Figure 3C.1, we replace these ideal sources with transistor realizations. Transistors $T_{3_{1}} \ldots T_{3_{n}}$, when operating in the subthreshold region, realize ideal current sources if $V_{d d}-V_{k}>2 V_{o}$. Recall our input $I_{1} \gg I_{2} \gg \ldots \gg$ I_{n}, and consider the effect of increasing the value of current source I_{c}. As shown in Equation 3C.1, the neuron output V_{1} increases with I_{c}. For large I_{c}, transistor $T_{2_{1}}$ is no longer operating in the subthreshold region. In this case, the equation $I_{c_{1}}=k^{\prime}(W / L)\left(V_{1}-V_{c}-V_{T}\right)^{2}$ describes $T_{2_{1}}$, where W and L are the width and
length of $T_{2_{1}}$, and k^{\prime} and V_{T} (the threshold voltage) are fabrication constants. We can solve for V_{1} for this situation, as

$$
\begin{equation*}
V_{1}=V_{o} \ln \left(\frac{I_{1}}{I_{o}}\right)+\sqrt{\frac{I_{c}}{k^{\prime}(W / L)}}+V_{T} \tag{3C.2}
\end{equation*}
$$

If we increase I_{c} further, V_{1} continues to increase. For a sufficiently large I_{c}, V_{1} can approach $V_{d d}$. In this situation, $T_{3_{1}}$ begins to turn off, and no longer acts as an ideal current source supplying I_{1}. In this case, we can model $T_{2_{1}}$ as an independent current source, supplying the current $I_{s} \equiv k^{\prime}(W / L)\left(V_{d d}-V_{c}\right)^{2}$, as shown in Figure 3C.2. To a first approximation, Figure 3C. 2 shows a winner-take-all circuit with $(n-1)$ neurons, with an effective control current of $I_{c}-I_{s}$.

We can apply this technique to represent multiple input intensity scales. Recall the input condition $I_{1}>I_{2} \gg \ldots>I_{n}$, and the desired behavior of outputs: $V_{1} \ldots V_{k-1}$ to be approximately $V_{d d}, V_{k}$ to maintain a logarithmic encoding of the input current I_{k}, and all other output voltages to be approximately 0 . To produce this behavior, we simply increase I_{s}, until $V_{1} \ldots V_{k-1}$ are approximately $V_{d d}$, but $V_{k}<V_{d d}$.

Figure 3C.1. Winner-take-all circuit, with transistor realizations replacing ideal input current sources.

Figure 3C.2. Winner-take-all circuit, after modeling a saturated neuron with the independent current source I_{s}.

