
A Multi-Sender Asynchronous Extension
to the AER Protocol

John Lazzaro and John Wawrzynek
Computer Science Division

UC Berkeley
Berkeley CA 94720-1776

{lazzaro,johnw}@cs.berkeley.edu

Abstract

The address-event representation (AER) is an asynchronous point-to-point communi-
cations protocol for silicon neural systems. This paper describes an extension of the AER
protocol that allows multiple AER senders to share a common bus. A fully-functional sili-
con implementation of the extended protocol is described, as well as a functional board-level
system of several of these chips sharing a common bus.

1 Introduction

Computation and communication are deeply interdependent in information processing
systems; the proposed benefits of a novel method of computation often disappear once
the realities of input and output are considered. This observation holds for biological
processing systems as well as engineering computer systems: the methods that neurons
use to communicate complement the mechanisms of neural computation, to realize an
energy-efficient style of information processing.

Early work in analog VLSI modeling of neural systems focused on mapping the com-
putational methods of neural computation on to analog circuits. To send the results of
the computation off chip, these systems use traditional data acquisition techniques. An
example of this approach is the original silicon retina design [4]. On this chip, weak-
inversion analog circuits model sensing and computation in the mammalian retina, while
a uniform-rate sampling system multiplexes the output array into a signal suitable for
driving a video monitor.

Spending a few minutes in front of this silicon retina chip while observing its video
monitor reveals the poor match between neural representations and uniformly-sampled
communication techniques. The analog processing of the retina acts to accentuate spatial
and temporal changes in contrast. If you hold your hand still in front of the chip, it fades
from the screen in a few seconds; if you move your hand quickly, an outline of your hand
appears. By coding changes in space and time with large signals, and regularity in space
and time with null signals, the retinal representation is inherently adaptively compressed.
However, a video signal lacks the representational power to exploit this compression.

The biological retina uses a different approach for communicating visual information
to the brain, that exploits the adaptive compression of the retinal representation. The
final analog signal for each image position is converted to series of fixed-width, fixed-
height pulses; a dedicated wire for each image position carries these pulses to higher brain
centers. A large input signal results in many pulses per second on the wire; a small input



signal results in few pulses per second. Since the retinal representation maps temporal
and spatial constancy to small signals, most of the time, most of the retinal outputs
will be sending very few pulses per second, and the energy used for communications is
small compared to a uniform-sampling approach. We refer to neural representations that
minimize the average pulse rate as energy-efficient codes.

The neural pulse representation has an interesting attribute: the signal imparts new
information only at the moment a new pulse begins. The information in a group of
(numbered) neurons can be compactly encoded as a list of pulse events, that tabulates
for each pulse event the neuron number and precise time of pulse onset. A natural way
of adapting neural pulse communication for silicon neural systems is to implement the
output representation of a chip as an array of pulsing neuron circuits, and to send an
event list describing pulse activity off chip to communicate the representation.

Several silicon neural models have implemented this approach to off-chip communica-
tion [7,5,1,6,2]. In these designs, an asynchronous arbitration tree acts to transform the
pulse activity of an array of output units into a series of events; these events are sent
off chip on an asynchronous data bus. These designs assume the receiver is listening to
the data bus with a constant latency, and do not send timestamp information. An event
consists of a single asynchronous bus transaction sending the number of a neuron, and
is sent at the moment of pulse onset. We call a protocol that communicates event lists
without timestamps an address-event representation (AER).

An off-chip asynchronous bus is capable of transmitting millions of events per second;
an output unit using energy-efficient coding may have an average pulse rate of 1-100
pulses per second, depending on the application. This large difference in speed allows
many output units to share an off-chip bus without significant loss of timing information.
Analysis in [1,2] shows the performance limits of this architecture as a function of the
number of output units, the behavior of the units, and desired timing accuracy, for an
auditory application.

In auditory applications, a single chip can compute an interesting neural represen-
tation; however, real-world applications often require several different representations of
an audio signal, that code for different aspects of sound (for example, separate represen-
tations for spectral profile and temporal onset detection). Multiple copies of single chip,
with different control parameters, can compute these representations independently [2].

However, while connecting a single AER port to a receiver is a simple exercise, con-
necting several ports to a single receiver is more difficult. As each AER port has its own
dedicated data bus, the fan-in of the receiver grows linearly with the number of input
ports. Moreover, each AER port has its own asynchronous control signals, forcing the
receiver to implement an arbitration system.

This paper describes an extension of the AER protocol, that allows many chips to
send events on a shared asynchronous bus. This extension takes the form of a modified
version of the AER sender port; no external logic is needed for arbitration or bus-sharing.
The paper describes an auditory chip that includes the modified sender port, and a board
implementation of several of these chips sharing a common asynchronous bus. The chip
has been fabricated and tested, and the board implementation is fully functional.

2 An AER implementation

Our multiple-sender AER implementation is an extension of the AER architecture
shown in [2]. We begin the description of our multiple-sender extension with a review of
the original architecture.



2.1 The output unit abstraction

An output unit converts an analog signal into a stream of fixed-width, fixed-height
pulses. In this paper, we are unconcerned about the specifics of this conversion, but
instead focus on the digital interface of an output unit. Figure 1 shows an output unit; a
typical pulse pattern for an output unit is shown as Pi. The unit has a request output,
r, that signals the onset of each Pi, and an acknowledge input, a, that acts to reset the r
signal.

Typical r and a signals are shown in Figure 1; these lines implement a 4-cycle signalling
convention. The first two pulses of Pi illustrate that the width of r is only dependent on
the acknowledge signal a, and can be shorter or longer than the pulse width of Pi. The
third and fourth pulses of Pi illustrate the lack of buffering in an output unit: data can
be lost if an acknowledge signal happens too slowly.

2.2 Generating a signals

Our goal is to multiplex the onset events of N output units onto a single bus. One
way to realize this goal is to design a system that observes the r1 . . . rn request signals
from the output units, and generates the a1 . . . an, in such a way that only one output
unit is being acknowledged at a moment in time.
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Figure 1. Symbol for an output unit, with request output r and acknowledge input a. Traces
show typical behavior of unit; Pi is the pulse waveform whose onsets are coded by r.
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Figure 2. Four output units, being reset by a 4-input arbitration tree. Each box marked with an
A is a two input arbiter. Note that no two ai signals are high simultaneously.



An N input asynchronous arbiter, using the 4-cycle signalling convention, will gen-
erate a1 . . . an given r1 . . . rn under this constraint. We use a tree of 2-input arbiters to
implement this N input arbiter. Figure 2 shows an implementation of 4 output units ser-
viced by an arbitration tree; the boxes marked A are two-input arbiters as implemented
in [2]. The traces in Figure 2 show typical behavior for staggered and simultaneous pulse
patterns.

2.3 Generating an asynchronous output bus

The arbitration tree in Figure 2 acts to order the asynchronous activity of the output
units into a sequence of individual events. To communicate this event sequence on a
parallel bus with 4-cycle asynchronous control signals, we make the following additions to
the system:

• We generate a request control signal for the bus, Rc, by a logical OR of the ai signals.

• We generate a binary encoding of the ai signals to create the data outputs of the bus,
Do and D1.

• We add control logic between the output units and the arbitration tree, to latch the
current state of the inputs to the arbitration tree at the moment an Rc signal occurs.
This latch is released when the bus acknowledge signal, Ac, occurs.

Figure 3 shows these changes, and a typical signal sequence for an event. By expanding
the depth of the arbitration tree and adding additional data lines, chips with linear arrays
of 120 output units have been implemented [1]; in addition, a straightforward extension
to this architecture supports chips with two-dimensional arrays of output units [2].

r

a

a

r

r

a

a

r

Rc Do D1 Ac

C
on

tr
ol

L
og

ic

A

A

A

ri

ai

Rc

Ac

Do − D1
i

Figure 3. A complete implementation of the address-event protocol. The encoder lines form the
data (Do, D1) and request (Rc) outputs of the off-chip bus. The box marked “Control Logic” acts
to latch the inputs of the arbiter tree; off-chip bus input Ac clears the latched state and resets the
system to send the next event.



3 Requirements for a multi-sender extension

To connect several senders to a single receiver, additional hardware is needed to ar-
bitrate between the senders, create new control signals, and multiplex the data bus. The
design presented in this paper modifies the implementation in Figure 3, so that many
senders chips can share the control and data lines of a single 4-cycle asynchronous bus
without additional hardware. Figure 4 shows a conceptual block diagram of several senders
sharing a common bus; this diagram illustrates the three functions needed for bus sharing:

• Arbitrate among the senders, to ensure only one chip is communicating an event at a
time. In Figure 4, connections between senders illustrate this function.

• Communicate which sender is currently using the bus. In Figure 4, the bus lines Wo
and W1 encode the identity of the sender.

• Electrically share wires. Many chip outputs connect to common wires in Figure 4; the
physical layer of bus sharing must be specified.

Several design goals guided our implementation choices for these three functions. Our
primary goal was the integration of all three functions into the sender, so that no additional
hardware would be needed to build a system. This requirement dictated a distributed
approach to arbitration and sender encoding. We also wanted a system that did not
require programming a unique identification number into each sender: in our design, the
sender information encoded on the W lines is computed in a distributed fashion by the
arbitration system.

4 The multi-sender AER extension

In our extension, each AER sender becomes a node in a board-level arbitration tree,
that is an extension of the chip-level arbitration tree of the original sender design. Figure
5 shows the design of the modified sender. The arbitration tree on the left side of Figure
5 is identical to tree in Figure 3, and acts to sequence the acknowledgements of output
units. The Rc, Ac, and Di signals have identical roles as in the original sender.

Chip 1

Rc Ac D W

Arbitration Arbitration

WDAcRc

Chip 2 Chip 3

Rc Ac D W

Arbitration

Rc
Ac

Do . . . Dn−1

Wo . . . W1

n n n2 2 2

Figure 4. Three sender chips sharing the same bus. Control signals Rc and Ac implement a
4-cycle handshake for the data bus, consisting of intra-chip event address Do . . . Dn−1, and chip
number Wo . . . W1. Arbitration communication between chips coordinates bus sharing.



The auxiliary tree on the right side of Figure 5 arbitrates between the root handshake
pair of the internal tree and the off-chip handshake pairs (Rl, Al) and (Rr, Ar). The
root handshake pair (Rm, Am) of the auxiliary tree is sent off chip. By the appropriate
interconnection of the (Rl, Al), (Rr, Ar) and (Rm, Am) signals of different senders, we
can design a board-level arbitration tree that ensures only one output unit in the entire
system is acknowledged at a given time.

In Figure 5, several signals are derived from the acknowledge signals of the auxiliary
tree:

• Dl = Al + Ainternal

• Dr = Ar + Ainternal

• Rt = Al + Ar + Ainternal.

The Dr and Dl signals are sent off chip. By the appropriate interconnection of the
Dr and Dl signals of different senders, we can produce a distributed computation of the
Wi signals that encodes the identity of the current sender. The Rt signal, in concert with
the Rc signal produced by the internal tree decoder, is used to coordinate the physical
level of bus sharing. Figure 6 shows the schematic symbol we will use to represent the
modified sender.

5 Interconnecting modified senders

Figure 7 shows the interconnection of 7 senders to form a fully-populated arbitration
tree of depth 3. The Rm and Am signals of the sender at the root of the tree (sender
4) are connected together; the Rl and Rr inputs of the senders at the leaves of the tree
(1,2,5,6) are grounded. The Rc signals from all senders are tied together; the Ac and Di
signals are connected in the same fashion.
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Figure 5. The new implementation of an AER sender. See main text for details.
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Figure 6. Schematic symbol for the AER sender in Figure 5. Signals marked with a ∗ use tri-state
pads shown in Figure 7, all other pads are normal digital input or output pads. Note that signal
Rt in Figure 5 is not sent off-chip, but is used internally for tri-state pad control.
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Figure 7. Seven senders connected to form a 3-level binary tree. The Rc, Ac, and Do . . . Dn−1

signals of all senders are tied together, and are not shown. Signals Wo . . . W2 encode the identity of
the sender driving the bus; the number in each sender symbol is the value driven on the Wo . . . W2

lines as it drives the bus.



The Dl and Dr outputs of senders in particular tree positions are connected together
to produce the Wi signals that identify the chip currently sending an event. The Dl and
Dr signals of the leaf-level senders (level 1) are unused. All Dr signals of level 2 are
connected to produce Wo, and all Dl signals of level 2 are connected to produce W1. For
all tree levels i > 2, the Dr outputs are not used, and the Dl outputs are all connected
together to produce Wi−1. The number label of each sender in Figure 7 is the binary
number encoded by (W2,W1,Wo) during an event from this sender.

We can make several observations about the behavior of the shared output lines in
this system (Rc, Di, Wi). Because the arbitration system enables only one sender at a
time, and because of the definitions of Rc and Di, only one sender at a time can drive the
Rc and Di lines to the high state. In addition, the definitions of Dl and Dr, coupled with
the interconnection rules stated above, guarantee that only one sender can drive the Wi
lines high at a time.

These observations, and the properties of the 4-cycle bus handshake, prompted us to
use a well-known technique for tri-state bus sharing. Our tri-state pad design is shown in
Figure 8. In the absence of a driving signal, the cross-coupled inverters to the right of the
pad act to maintain the state of the pad output. The signal associated with the pad is
connected to the active-high input Pin, and acts to drive the pad to Vdd. The active-low
input Nin acts to drive the pad to ground, and is connected to a control signal that briefly
pulses low at the end of every 4-cycle handshake on the (Rc, Ac) signals.

At the end of every 4-cycle handshake, the output of the tri-state pad is reset to ground
by the control signal connected to Nin. In the course of the next event transaction, the
signal connected to Pin may drive the pad output Vdd; if not, the pad remains at ground.
At the end of the handshake, the pad is reset to ground again by the signal connected to
Nin.
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K K

K K
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Figure 8. Tri-state pad design. The cross-coupled inverters on the right act to retain the state of
the bus; the drivers on the left force the state of the pad to change. The cross-coupled inverters
can be disabled on a per-chip basis using the signal K. Numbers next to transistors indicated total
gate length in microns.



The circuit shown in Figure 9 generates the control signal for Nin. For the Dl and
Dr pads, the R signal in Figure 9 connects to the Rt signal shown in Figure 5; for the Rc
and Di pads, the R signal in Figure 9 connects to the Rc signal shown in Figure 5.

The output driver transistors controlled by Nin and Pin are strong compared to the
transistors in the cross-coupled inverters; this difference allows the driver transistors to
overpower the stored state of the inverter pair easily. Power is dissipated only during
these transitions; an open-drain bus using passive pullups, in contrast, has static power
consumption in the low logic state.

The K control signal on each pad supports the selective disabling of the cross-coupled
inverters. If multiple tri-state pads are connected together, only one inverter pair should
be enabled; this practice ensures the state of the pad can be overdriven. A simple approach
is to connect the K’s of Rc and all Di’s together to form signal K1, and connect the K’s
of Dl and Dr together to form signal K2, and provide off-chip inputs for setting K1 and
K2.

Nin

R

RAc
Ac

R

Nin

Figure 9. Circuit to reset the cross-coupled inverters in Figure 8 at the end of every bus trans-
action. To reset the Wi pads, use the Rt signal in Figure 5 for R; to reset the Di and Rc pads, use
the internal Rc signal generated by the decoder line in Figure 5 for R.

6 Experimental results

We designed a test chip containing two logically separate modified AER senders, each
with 8 output units; only the Ac signal is shared between the two senders. The output
units were driven by an auditory nerve model, as described in [3]. The chip was fabricated
on the Orbit 2µ low-noise analog n-well process, in a TinyChip 40-pin package. Pin
positions of tri-state pads were placed at adjacent positions at the ends of the package, to
induce worse-case noise coupling.

Using 4 chips, we constructed a wire-wrap board implementation of the system shown
in Figure 7. We connected the asynchronous bus from this board to the AER data dis-
play system described in [2,1]; this S-bus-based system allows continuous, real-time data
acquisition and display of AER data up to 1 Mega-event per second.

We configured the analog auditory model so that each chip was tuned to a different
audio frequency range. Experiments with tone sweeps confirmed correct operation of the



seven chips; other auditory experiments with a low-frequency square wave input confirmed
the gross temporal performance of the communications system.

By driving high-amplitude white noise into the cochlear model inputs, we were able
to generate an aggregate pulse rate on the 56 output units (8 output units for 7 senders)
sufficient to cause back-to-back bus cycles. Figure 10 shows a typical bus cycle from the
7-sender system in this situation. The 1 Mega-event per second performance of our data
acquisition system clearly limits the speed of the bus cycle; the τar and τar signals are
short compared to the acquisition-system delays (see caption).

To place an upper bound on the cycle time of our 7-sender board, we disconnected
the board from the data acquisition system and connected the Rc and Ac signals together.
Under these conditions, the period of Rc during a multiple-event transmission varied from
100 to 140 ns. The variations reflect the delays of different nodes on the arbitration tree.

Because of the pin and area limitations of combining two auditory models and AER
sender ports in a TinyChip payload, the functionality of the auditory model is limited;
many auditory model control voltages were grounded internally because pads were in short
supply. The practical use of this system in auditory applications is limited; the purpose
of the chip was to test the modified AER sender design in an economical fashion.

A version of the 120-channel auditory model presented in [1], retrofitted with this
modified AER sender design, has also been fabricated. A three-sender system built with
this chip functions correctly, and exhibits bus transaction speeds consistent with the data
above.

Rc

Ac

450ns

τar τar

450ns

Figure 10. Typical waveforms for Rc and Ac from the 7-sender board implementation, connected
to an SBus interface board with a 1µs cycle time. Typical τar were 25ns; typical τar were 40-70ns.

7 Discussion

The multi-sender AER protocol has direct applications in auditory processing. A
variety of interesting auditory representations coding spectral shape, pitch, auditory lo-
calization, and other properties can be implemented on a single die, along with non-volatile
electrically programmable parameter storage and an AER sender port [1].

Routing input to an auditory model chip is simple: a shielded audio cable suffices.
This technique scales very well to hundreds of auditory model chips. If these auditory
model chips use energy-efficient coding and the multi-sender AER protocol, combining
the output of many auditory models is also straightforward. In this way, a large collection
of auditory model chips function as special purpose analog-to-digital conversion system,
producing specialized representations of sound in digital form from an analog audio input.



Would such a system be useful? Recent research in audio signal processing has cen-
tered on building auditory scene analysis systems: sound processing systems that break
up a sound signal into many different representations before making decisions on the data
[8]. These systems are analogous to machine vision systems that compute motion, color,
and edge representations on a raw input image before performing a task. A collection of
silicon auditory model chips communicating with a host computer would function as a
real-time, low-power hardware accelerator for auditory scene analysis.

The multi-sender AER technology, in its present state, is less relevant to silicon visual
models. Multiple chips are needed to compute a single non-trivial visual representation,
in suitable resolution for visual scene analysis. The partitioning of a visual representation
over several chips can take many forms, but all methods require individual chips to both
send and receive visual scene information. If the chips communicate using AER, this
requires an AER receiver port and an AER sender port on each chip. Building vision
systems using many chips requires an AER extension that handles multiple receivers and
multiple senders, with sufficient flexibility to implement the required interconnections for
vision algorithms.

One general communications architecture for vision chips is broadcast: every vision
chip sends all event information to every other chip in the system [5]. The multi-sender
AER technology presented in this paper can be extended to support broadcast in a
straightforward way. In its present form, the control information (Rc, Ac) and intra-chip
event information (Do . . . Dn−1) sent to the AER receiver is implicitly broadcast to every
chip in the system. If the (Rc, Ac) handshake is sufficiently long, any chip in the system is
able to “snoop” on the transaction between the sender chip and the host AER receiver. If
the W bus is also distributed to every chip in the system, the identity of the chip sender
is also available to be snooped, and a full broadcast operation would be implemented.

The speed limitation on the (Rc, Ac) handshake is a function of the physical size of
the complete system; a dense packaging technology would improve the performance of the
system. Alternatively, an asynchronous approach to bus snooping could be implemented.
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