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Abstract

We describe the implementation of a hidden Markov model state
decoding system, a component for a wordspotting speech recogni-
tion system. The key specification for this state decoder design is
microwatt power dissipation; this requirement led to a continuous-
time, analog circuit implementation. We describe the tradeoffs
inherent in the choice of an analog design and explain the mapping
of the discrete-time state decoding algorithm into the continuous
domain. We characterize the operation of a 10-word (81 state)
state decoder test chip.

1. INTRODUCTION

Digital implementations of signal processing systems have numerous advantages
over their analog counterparts, including accuracy, immunity from temperature-
and supply-induced variations, and ease of design and test. These advantages make
digital the default implementation choice in many application domains. In certain
applications, however, a particular system requirement is much easier to achieve in
an analog implementation.

Power consumption is a requirement that sometimes dictates an analog design. For
example, implantable medical devices require signal processing systems that operate



continuously for many years from a small battery. A maximum power consumption
specification of a few microwatts is not uncommon in these devices (Coggins et al.,
1995). For many of these micropower systems, an analog implementation may be
the only realistic way to meet the power specification.

In this paper, we describe an analog implementation of a common signal processing
block in pattern recognition systems: a hidden Markov model state decoder. The
design is intended for applications such as voice interfaces for portable devices that
require micropower operation. The paper focuses on the circuit and architecture
choices that limit the impact of analog nonidealities on system performance.

The paper begins (Section 2) with an explanation of hidden Markov model state
decoding, using the wordspotting speech recognition task as an application. In
Section 3, the digital, discrete-time state decoding algorithm is recast in analog,
continuous-time circuits and tradeoffs inherent in this mapping are detailed. Section
4 describes a test chip using this decoder. Section 5 shows experimental data from
this chip.

The state-decoder design is a practical implementation of the Viterbi Net architec-
ture originally described in (Lippmann and Gold, 1987). Analog circuit implemen-
tations of state decoding have previously been used in data storage applications
(Matthews and Spencer, 1993).

2. HIDDEN MARKOV MODEL STATE DECODING

Hidden Markov models (HMMs) are used in the most successful modern speech
recognition systems (Bourlard and Morgan, 1994). An HMM speech recognition
system consists of a probabilistic state machine, and a method for tracing the state
transitions of the machine for a given input speech waveform.

Figure 1 shows a state machine for a simple speech recognition problem: detecting
the presence of keywords (“Yes,” “No”) in conversational speech. This type of
recognition where a small set of words is detected in unconstrained speech is called
wordspotting (Lippmann et al.,, 1994). Wordspotting can provide simple-to-use
voice control of systems with little user instruction or training. As the speaker
pronounces the word “Yes” the state machine sequences through states 1-10; while
pronouncing the word “No” the machine sequences through 11-20. While speaking
other words, and while only background environmental sounds are present, the
machine stays in state 21 (the “Filler” state).
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Figure 1. Grammar for a two-keyword (“Yes,” states 1-10, “No,” states 11-20)
wordspotter.



Our goal during speech recognition is to trace out the most likely path through this
state machine that could have produced the input speech waveform. This problem
can be partially solved in a local fashion, by examining short (80 ms. window)
overlapping (15 ms. frame spacing) segments of the speech waveform. We estimate
the probability bi(n) that the signal in frame n was produced by state i, using static
pattern recognition techniques. Static pattern recognition of short speech segments
is a difficult task: state-of-the-art approaches provide about 60% accuracy (Bourlard
and Morgan, 1994).

To improve the accuracy of these local estimates, we need to integrate information
over the entire word. We do this by creating a set of state variables for the machine,
called likelihoods, that are incrementally updated at every frame. Each state i has
a real-valued likelihood φi(n) associated with it. Qualitatively, a likelihood value
for a state indicates how likely it is that a path of states ending at that state best
models the input speech signal. At each frame, the state with the largest likelihood
is considered the current state of the machine.

Most states in Figure 1 have a stereotypical form: a state i that has a self-loop
input, an input from state i−1, and an output to state i+1, with the self-loop and
exit transitions being equally probable. For states in this topology, the update rule

φi(n) = bi(n)(φi(n − 1) + φi−1(n − 1)) (1)

lets us estimate φi(n), given the prior state likelihoods φi(n − 1) and φi−1(n − 1)
and the static probability estimate bi(n) as described above. In this equation, the
transition probabilities have been left out for simplicity because they only introduce
a constant scaling factor.

Figure 2 shows a complete system architecture which uses HMM state decoding
to perform wordspotting. The “Feature Generation” and “Probability Generation”
blocks comprise the static pattern recognition system, producing the probabilities
bi(n) at each frame. Using these probabilities, the “State Decoding” block updates
the likelihood state variables φi(n). The end-state likelihoods for each keyword and
the filler state are monitored by the “Word Detection” block. The “Word Detection”
block uses a simple, online algorithm to flag the occurrence of a word. Keyword
end-state likelihoods are divided by the filler likelihood, and when this ratio exceeds
a fixed threshold a keyword detection is signalled.

This paper primarily concerns implementations of the “State Decoding” block. In
the remainder of this section, we focus on an issue central to the implementation of
Equation 1: the dynamic range of φi(n). As the bi(n) are probabilities,

∑
i
bi(n) = 1.

Therefore, all bi(n) ≤ 1.0, and with every iteration of Equation 1, most φi(n) values
grow smaller.
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Figure 2. Block diagram for the two-keyword spotting system.



In our experience, a probability range of 0.0001 ≤ bi(n) ≤ 1.0 is necessary for best
wordspotting accuracy. With this range of bi(n), any φi(n) may be reduced by a
factor of 10,000 every frame. We use several techniques to handle this wide dynamic
range. Equation 1 can be restated in the logarithmic domain, as:

log(φi(n)) = log(bi(n)) + log(φi(n − 1) + φi−1(n − 1)), (2)

and “log likelihood” values (i.e. log(φi(n))) become the stored state variables of the
machine. Log likelihoods are negative numbers, whose magnitudes increase with
each frame. Each unit of log likelihood represents an order of magnitude of likeli-
hood. We limit the range of log likelihood values using a renormalization technique.
Renormalization is implemented by maintaining a minimum log likelihood value for
the overall state machine. If any log likelihood in the systems falls below this min-
imum value, a positive constant is added to all log likelihoods in the machine to
prevent clipping.
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Figure 3. Simulation showing state decoder dynamic range requirements. (a)
Word probability inputs b1 . . . b10. (b) Log likelihood outputs from states 3, 6 and
9. (c) Data from (b), normalized by subtracting the log likelihood of the filler state.



Exp

Exp

Log

Log

Z−1

bi

log(φi−1)

log(φi) (a)

(b)

gi( )

Figure 4. (a) Top-level block diagram implementation for Equation 2, the single-
state decoding equation. (b) Implementation of the gi() function used in (a).

Figure 3 illustrates the range of log likelihoods needed for the wordspotting ar-
chitecture. This figure shows data from a state decoder simulation for the state
machine shown in Figure 1. The artificial input to this simulation (Figure 3a) is a
simplified probability pattern that could be generated by speaking the word “Yes.”
This speech input produces sequential peaks in b1, b2, . . . b10.

Figure 3b shows the log likelihood values for states 3, 6, and 9 in the machine during
this word, without renormalization. The log likelihood outputs trend downward
throughout the simulation. Figure 3c removes this downward trend from the data,
to expose the true dynamic range requirements of the system. We generated the
data shown in Figure 3c by subtracting the log likelihood of the filler state from the
data shown in Figure 3b, as is performed in the word detection stage of Figure 2.

The log likelihood signals shown in Figure 3c range over about 35 units during the
word. In our experience with this wordspotting architecture, if the log likelihood
values are constrained to operate over less than 35 units, a word that differs from
“Yes” at its start (for example, “Less”) may be incorrectly flagged as a “Yes.”

Not all speech recognition systems require such a large log likelihood dynamic range.
The wordspotting algorithm described in this section uses a simple word detection
algorithm that requires a large dynamic range for accurate recognition. Other
approaches that use more complex algorithms which function well with limited
dynamic range would be infeasible for an analog implementation.

3. ANALOG CIRCUITS FOR STATE DECODING

The block diagram shown in Figure 4a is a digital discrete-time implementation
of Equation 2. This section begins by introducing an analog discrete-time state
decoder implementation, that shares the topology of Figure 4a. Then, we implement
the renormalization procedure described in Section 2, and recast this design as a
continuous-time circuit. Finally, the system architecture of the state decoder is
described in detail.



3.1 ANALOG DISCRETE-TIME STATE DECODING

Figure 5a shows an analog discrete-time implementation of Equation 2. The delay
element (labeled Z−1) acts as a edge-triggered sampled analog delay, with full-scale
voltage input and output. The delay element is clocked at the frame rate of the
state decoder (15 ms. clock period). The “combinatorial” analog circuits must
settle within the clock period.
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Figure 5. (a) Analog discrete-time circuit implementation of a single-state de-
coder. (b) Enhanced version of (a), includes the renormalization system. (c)
Continuous-time extension of (b).



A clock period of 15 ms. allows a relatively long settling time, which enables us to
make extensive use of submicroampere currents in the circuit design. The microwatt
power consumption design specification drives us to use such small currents. As a
result of submicroampere circuit operation, the MOS transistors in Figure 5a are
operating in the weak-inversion regime. In this paper we use this model of weak-
inversion MOS transistor operation (n-channel version):

Ids = Io exp(
κVg − Vs

Vo

), (3)

where Vo = kT/q, and parameters Io and κ are functions of Vsb. We add the
subscripts n or p to these parameters to denote n-channel or p-channel when needed.

Equation 2 uses two types of variables: probabilities and log likelihoods. As noted in
Section 2, probabilities range over a factor of 10,000, and log likelihoods range over
a factor of 35. In the implementation shown in Figure 5, we choose unidirectional
current as the signal type for probability, and large-signal voltage as the signal type
for log likelihood.

We can understand the dimensional scaling of these signal types by analyzing the
floating-well transistor labeled (4) in Figure 5a. This transistor implements the
blocks labeled “Log” and “+” in the diagram shown in Figure 4a. The equation

Vm log(φi(n)) = Vm log(bi(n)) + gi(n − 1) + Vm log(
Ih

Io

) (4)

describes the behavior of this transistor, where Vm = (Vo/κp) ln(10), and gi(n − 1)
is the output of the delay element. This equation brings several design issues into
clear focus:

• Analog Nonidealities. Both Io and κ in Equation 3 are functions of Vsb.
However, the floating-well topology of the transistor labeled (4) in Figure 5a ensures
Vsb = 0 for this device, and thus Vm and Io in Equation 4 are independent of changes
in Vs. However, Vm and Io are functions of ambient temperature; in addition,
multiple copies of the circuit on the same die have different values of Vm and Io,
due to parameter variations.

• Input Probability Encoding. Note that bi(n) is a unitless quantity, identi-
cal to the probability bi(n) in Equation 2. This unitless quantity scales the fixed
unidirectional current Ih, defining the current flowing through the transistor. The
current Ih is chosen to be the largest current that keeps the transistor in the weak-
inversion regime. We define Il to be the smallest value for Ihbi(n) that allows the
circuit to settle within the clock period. The ratio Ih/Il sets the supported range
of bi(n). For typical layouts and process parameters, Ih/Il ≈ 10, 000 are possible,
meeting the design specification for this parameter.

• Log Likelihood Encoding. Note that log(φi(n)) is a unitless quantity, identical
to the log likelihood log(φi(n)) in Equation 2. This unitless quantity scales the volt-
age Vm to form a large-signal voltage encoding of log likelihood. For typical values
of κp at Vsb = 0 in a 2µm n-well process, a nominal value for Vm = (Vo/κp) ln(10) is
85mV at 300K. To support a log likelihood range of 35 (the design specification for
this parameter in Section 2) requires a large-signal voltage range of about 3 volts
(i.e. 35Vm).



The term gi(n−1) in Equation 4 is shown as the output of the circuit labeled (1) in
Figure 5a. Comparing Equations 2 and 4, we notice that ideally, the term gi(n− 1)
in Equation 4 should implement the expression Vmlog(φi(n − 1) + φi−1(n − 1)). In
practice, the circuit implements the function

Vmlog((erlnφi(n−1) + erlnφi−1(n−1))1/r) (5)

where r = κn/κp, with κp constant at its Vsb = 0 value, and κn weakly dependent on
the input voltages of the subcircuit. Equation 5 behaves identical to Vmlog(φi(n −
1) + φi−1(n − 1)) if the two input likelihoods are sufficiently different in value. For
most applications, this asymptotic property is sufficient for correct system behavior.

Note that if r = 1 Equation 5 reduces to Vmlog(φi(n− 1) + φi−1(n− 1)). A variant
of this circuit that exchanges the role of p-channel and n-channel transistors, and
uses floating-well p-channel transistors for the differential pair, has r = 1 for all
input voltage values. This design could be used if an application requires an exact
implementation of Vmlog(φi(n − 1) + φi−1(n − 1)).

3.2 RENORMALIZATION

As noted in Section 2, the computed log likelihood log(φi(n)) in Equation 2 de-
creases every frame. The circuit shown in Figure 5a does not behave in this way
because the voltage Vmlog(φi(n)) increases every frame. This difference in behav-
ior is attributable to the constant term Vm log(Ih/Io) in Equation 4, which is not
present in Equation 2, and is always larger than the negative contribution from
Vm log(bi(n)).

Figure 5b adds a new circuit (labeled (2)) to Figure 5a, that allows the constant
term in Equation 4 to be altered under control of the binary input V . If V is Vdd,
the circuit in Figure 5b is described by

Vm log(φi(n)) = Vm log(bi(n)) + gi(n − 1) + Vm log(
IhIo

I2
v

), (6a)

where the term Vm log((IhIo)/I2
v ) should be less than or equal to zero. If V is

grounded, the circuit is described by

Vm log(φi(n)) = Vm log(bi(n)) + gi(n − 1) + Vm log(
Ih

Iv

). (6b)

where the term Vm log(Ih/Iv) should have a positive value of at least several hundred
millivolts.

The goal of this design is to create two different operational modes for the system.
One mode, described by Equation 6a, corresponds to the normal state decoder
operation described in Equation 2. The other mode, described by Equation 6b,
corresponds to the renormalization procedure described in Section 2, where a posi-
tive constant is added to all likelihoods in the system. During operation, a control
system alternates between these two modes, to manage the dynamic range of the
system.



Since system operation is under closed-loop control, the exact values of the constant
terms in Equations 6a and 6b are not critical. For the fabrication process we used
for the test chip presented in this paper (2µ n-well), we calculate nominal values for
these constants. In this process, an Ih of 660 nA and an Io of 1e-16 are typical, and
an Il of 66 pA and an Iv of 20 pA easily meet settling time requirements. These
bias currents set the term Vm log(IhIo/I2

v ) in Equation 6a to -0.07V, and the term
Vm log(Ih/Iv) in Equation 6b to 0.38V. These values are in the correct range to
implement the operational modes of the system. For fine-line processes, however, a
modified implementation of the circuit labeled (2) in Figure 5b may be needed for
proper operation.

Analog nonidealities relating to the Vsb dependence of the parameters Io and κ are
avoided in the circuit labeled (2) in Figure 5b, by using a floating-well configura-
tion for the key p-channel level-shifting transistors in the circuit. Mismatch in the
terms Vm log(IhIo/I2

v ) (Equation 6a) and Vm log(Ih/Iv) (Equation 6b) across differ-
ent circuits on the same die is the main inaccuracy in the renormalization circuits.
Current-source mismatch, and Io and κ mismatch, are the contributing causes of
this nonideality.

3.3 ANALOG CONTINUOUS-TIME STATE DECODING

Section 2 formulated HMMs as discrete-time systems. However, there are significant
advantages in replacing the Z−1 element in Figure 5b with a continuous-time delay
circuit. The switching noise of a sampled delay is eliminated. The power consump-
tion and cell area specifications may benefit from continuous-time implementation
as well.

Fundamentally, a change from discrete-time to continuous-time is not only an im-
plementation change, but also an algorithmic change. In this section, we present
a continuous-time state decoder whose observed behavior is qualitatively similar
to a discrete-time decoder. We present a simple analysis of continuous-time state
decoder operation to explain this observed similarity. However, a more complete
analysis would be required to quantify the limitations and appropriate application
domains of continuous-time decoders.

Figure 5c shows the continuous-time state decoder circuit. The delay circuit, labeled
(3), uses a linear transconductance amplifier in a follower-integrator configuration.
The capacitance Cτ and the tunable transconductance G set the time constant for
the delay. The output of the state decoder is the continuous-time voltage Vi(t).
In the following analysis, we link the analog discrete-time behavior of the circuit
shown in Figure 5b, whose behavior is described in Equations 6a and 6b, with the
continuous-time circuit shown in Figure 5c.

In this analysis, we assume that the input probability bi(n) remains a discrete-time
variable. We begin our analysis at the end of frame n− 1, and end it at the end of
frame n. During this time interval of length τ the value of bi(n) is constant. We
also assume that Vi(t) # Vi−1(t) throughout the interval; this assumption lets us
treat the circuit labeled (1) in Figure 5c as a simple voltage follower. Given these
assumptions, we can write differential equations for the decoder circuit, for normal
decoder operation (Equation 6a)



Vm

Cτ/G
(log(

IoIh

I2
v

) + log(bi(n))) =
dVi(t)

dt
(7a)

and renormalization operation (Equation 6b)

Vm

Cτ/G
(log(

Ih

Iv

) + log(bi(n))) =
dVi(t)

dt
. (7b)

We solve these equations via direct integration, using the boundary conditions for
the beginning and end of a frame:

Vm

Cτ/G
(log(

IoIh

I2
v

) + log(bi(n)))
∫ τ

0
dt =

∫ Vm log(φi(n))

Vm log(φi(n−1))
dV i(t) (8a)

Vm

Cτ/G
(log(

Ih

Iv

) + log(bi(n)))
∫ τ

0
dt =

∫ Vm log(φi(n))

Vm log(φi(n−1))
dV i(t). (8b)

Evaluating these integrals, and rearranging terms, results in the final expressions:

Vm log(φi(n)) = αVm log(bi(n)) + Vm log(φi(n − 1)) + αVm log(
IhIo

I2
v

) (9a)

Vm log(φi(n)) = αVm log(bi(n)) + Vm log(φi(n − 1)) + αVm log(
Ih

Iv

), (9b)

where α = τ/(Cτ/G). If G is tuned so that α = 1, Equation 9a is identical to the
discrete-time formulation of Equation 6a, and Equation 9b is identical to Equation
6b. Note the that g(n − 1) term in Equations 6a and 6b can be simplified to
Vm log(φi(n − 1)), if Vm log(φi(n − 1)) # Vm log(φi−1(n − 1)).

Unfortunately, this analysis technique does not easily extend to conditions other
than Vi(t) # Vi−1(t). For these other conditions, multiple states must be analyzed
simultaneously, and a set of coupled nonlinear differential equations must be solved.
However, simulations of multi-state systems indicate a qualitative similarity between
continuous-time and discrete-time decoder architectures.

Several analog nonidealities affect the continuous-time state decoding architecture.
One issue surrounds the tuning of the conductance parameter G to meet the con-
dition τ/(Cτ/G) = 1. This condition requires G to be compensated for ambient
temperature and power-supply variations. Recent advances in micropower compen-
sation circuits (Oguey and Aebischer, 1996) could be leveraged to solve this problem
within the power consumption specifications of the system.

A second issue involves the voltage range of linearity of the transconductance
amplifier in the delay circuit. To bring this issue into focus, consider a simple
amplifier implementation, that has the weak-inversion transfer function Iout =
Iτ tanh((κ(Vplus − Vminus)/(2Vo))) where the bias current Iτ sets the amplifier
transconductance. The equations



Vm log(φi(n)) = Vm log(φi(n − 1)) +
τIτ

Cτ

tanh(0.5 ln(bi(n)) + 0.5 ln(
IhIo

I2
v

)) (10a)

Vm log(φi(n)) = Vm log(φi(n − 1)) +
τIτ

Cτ

tanh(0.5 ln(bi(n)) + 0.5 ln(
Ih

Iv

)) (10b)

describe the operation of the continuous-time state decoder, if this simple transcon-
ductance amplifier is used in the delay circuit. Using the bias current values for a
2µ n-well process detailed earlier in this section, we can rewrite these equations as:

Vm log(φi(n)) = Vm log(φi(n − 1)) +
τIτ

Cτ

tanh(1.15 log(bi(n)) − 0.9) (11a)

Vm log(φi(n)) = Vm log(φi(n − 1)) +
τIτ

Cτ

tanh(1.15 log(bi(n)) + 5.2) (11b)

For all but the largest bi(n) values, the tanh function of Equation 11a will be
saturated to an output of -1; for all but the smallest bi(n) values, the tanh function
of Equation 11b will be saturated to an output of +1. To restore the desired system
behavior shown in Equations 9a and 9b, the simple transconductance amplifier
circuit could be replaced by an amplifier design with an extended linear range.
Alternatively, a first-order log domain filter could be substituted for the follower-
integrator delay circuit.

In the test chip presented in this paper, we used a follower-integrator delay imple-
mentation with a simple transconductance amplifier. As explained in Section 4, we
were able to demonstrate the qualitative performance of the state decoding system,
despite the reduced bi(n) range depicted in Equation 11a and 11b.

3.4 STATE DECODING SYSTEMS

The single-state decoder circuit shown in Figure 5c satisfies our primary design
specifications. It supports an input probability range of 10,000, and for the typical
bias current values detailed in Section 3.2, it supports a voltage range in excess of
3V, providing a factor of 35 in log likelihood range. In this section, we describe a
state decoding system architecture that uses this circuit as a core building block.
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Figure 7. (a) Circuit for renormalization control. (b) Circuit for word detection.

Figure 6 shows a state decoding system that corresponds to the grammar shown
in Figure 1. Each numbered circle corresponds to the circuit shown in Figure 5c.
The signal flows of this architecture support a dense layout: a rectangular array of
single-state decoding circuits, with input current signal entering from the top edge
of the array, and end-state log likelihood outputs exiting from the right edge of the
array. States connect to their neighbors via the Vi−1(t) and Vi(t) signals shown in
Figure 5c. For notational convenience, in this figure we define the unidirectional
current pi(t) to be Ihbi(t).

In addition to the single-state decoder circuit, several other circuits are needed to
complete the system. The “Recurrent Connection” block in Figure 6 implements
the loopback connecting the filled circles in Figure 1. We implement this block
using a 3-input version of the voltage follower circuit labeled (1) in Figure 5c. This
implementation is subject to the same nonidealities described in Section 3.1.

The “Word Detection” block in Figure 6 performs a simple function. Each keyword
end-state log likelihood is subtracted from the filler state log likelihood. The circuit
shown in Figure 7b performs this function, subtracting the end-state word log like-
lihood Vw from the maximum of the filler state log-likelihood Vf and the limiting
voltage Vx, producing the output current

In = Is exp

(
Vw − max(Vf , Vx)

Vo/κ

)
. (12)

Mismatches in the κ values for n-channel and p-channel transistors, and the depen-
dence of κ on Vsb, are the sources of inaccuracy in Equation 12.

To complete the system, we implement the renormalization algorithm, using the
circuit shown in Figure 7a. The circuit takes as input the log likelihood signals from
all states (log(φ1), log(φ2), . . . in Figure 7a) and generates the binary control signal
V , that is distributed to all states in this system. This control signal determines
whether the single-state decoding circuits exhibit normal behavior (Equation 6a) or
renormalization behavior (Equation 6b).

The renormalization control circuit works as follows. Initially, the behavior of Equa-
tion 6b is selected (renormalization mode). In this mode, log likelihood voltages



tend to increase over time, with the the most likely states leading the ascent. This
mode stays in effect until one of the log likelihood voltages reaches the voltage Lh

(shown in Figure 7a). At this point, the control circuit toggles the value of V , so
that the behavior of Equation 6a is selected. In this mode, log likelihood voltages
tend to decrease over time. Once the largest state log likelihood voltage falls to
the voltage Ll (shown in Figure 7a, set to be several hundred millivolts below Lh),
renormalization behavior is again selected, starting another cycle. Note that unlike
the classical renormalization algorithm described in Section 2, the circuit shown in
Figure 7a operates by detecting overflow, not underflow.

There are several deficiencies in this design. The switching of the control signal V

(and its complement V ) produces glitches at the node labeled fi in Figure 5c; these
glitches are integrated by the continuous-time delay circuit, introducing error into
the likelihood values. In addition, unless low-power design techniques are used to
implement the inverter in the circuit shown in Figure 7a, a sizable current glitch
occurs during each change of V , impacting system power dissipation. Finally, as
indicated by Equations 11a and 11b, the switching approach to renormalization is
the underlying reason that a transconductance amplifier with a large linear input
range is needed in the continuous-time delay circuit.

Circuit-level improvements can lessen these deficiencies. An alternative approach is
to abandon the discrete-time renormalization algorithm, in favor of a continuous-
time algorithm. Continuous-time modulation of the current Iv in the circuit labeled
(2) to Figure 5b could be the basis for such a continuous-time renormalization
system.

4. STATE DECODER TEST CHIP

We fabricated a state decoder test chip in the 2µm, n-well process of Orbit Semi-
conductor, via MOSIS. The chip has been fully tested and is functional. The chip
decodes a grammar consisting of eight ten-state word models and a filler state. The
state decoding and word detection sections of the chip contain 2000 transistors, and
measure 586x2807µm (586x2807λ, λ = 1.0µm).

In this section, we show test results from the chip, to illustrate the qualitative
behavior of the system. In these tests, we apply a temporal pattern of probability
currents to the ten states of one word in the model (numbered 1 through 10), and
observe the log likelihood voltage of the final state of the word (state 10). The filler
state input probability current is constant. The probability currents of all states
of the other word models are set to the minimum value, essentially removing these
word models from the system.

The chip includes circuits for generating test patterns of input probability currents.
A radial-basis function circuit (Delbruck, 1991), shown in Figure 8a, is the core
element in the test generation system; the circuit shown generates the output current

Iu

4 sech2(κ(Vp − Vn)
2Vo

) + Il (13)

as a function of its differential voltage input. An array of these circuits, shown in
Figure 8b, is used to generate the probability currents for the word model.
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Figure 8. (a) Radial basis function circuit. (b) Pattern generation system for the
test chip.

A low-frequency ramp waveform is applied to the input Vg(t) to produce a temporal
pattern of current outputs. By adjusting the amplitude and frequency of this ramp,
a variety of probability patterns can be produced. In an electrical sense, this pattern
generation system provides a realistic proxy for the “Probability Generation” system
(Figure 2) of a speech recognition system, since radial basis functions are often used
in the final processing stage of speech classifiers (e.g. (Lippmann et al.,, 1994)).

As detailed in Section 3.3, the test chip uses a simple circuit implementation for the
continuous-time delay, that has a limited range of linearity as quantified in Equa-
tions 11a and 11b. To work around the problem, we restrict our maximum input
probability current to a small multiple of Il. This restriction forces the tanh func-
tion to be saturated to an output of -1 during renormalization (Equation 11a), and
operates the tanh function over its linear regime during normal operation (Equation
11b).

Figure 9 contains simulated results, allowing us to show internal signals in the
system that were not brought off-chip. Figure 9a shows the temporal pattern of
input probability currents p1 . . . p10, that correspond to a simple simulated input
word.

Figure 9b shows the log likelihood voltage waveform for the end-state of the word
(state 10). The waveform plateaus at Lh, the limit of the operating range of the
state decoder system. During this plateau this state has the largest log likelihood
in the system. Figure 9c is an expanded version of Figure 9b, showing in detail the
renormalization cycles described in Section 3.4.

Figure 9d shows the output computed by the “Word Detection” block in Figure
7. Note that during the peak plateau in Figure 9b, the Word Detection output
is not constant, reflecting changes in the filler state log likelihood. Also note the
smoothness of the waveform, unlike Figure 9c. By subtracting the filler-state log
likelihood from the end-state log likelihood, the Word Detection block cancels the
common-mode renormalization waveform.
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Figure 9. Simulation of state decoder: (a) Inputs patterns, (b), (c) End-state
response, (d) Word-detection response.

Figure 10 shows a series of four experiments that confirm the qualitative behavior
of the state decoder system. This figure shows experimental data recorded from
the fabricated test chip. Each experiment consists of playing a particular pattern
of input probability currents p1 . . . p10 to the state decoder many times; for each
repetition, a certain aspect of the playback is systematically varied. We measure
the peak value of the end state log likelihood during each repetition, and plot this
value as a function of the varied input parameter. For each experiment shown
in Figure 10, the left plot describes the input pattern, while the right plot is the
measured end-state log likelihood data.

The experiment shown in Figure 10a involves presenting complete word patterns
of varying durations to the decoder. As expected, words with unrealistically short
durations have end-state responses below Lh, and would not produce successful word
detection. The experiment shown in Figure 10b also involves presenting patterns of
varying durations to the decoder, but the word patterns are presented “backwards,”
with input current p10 peaking first, and input current p1 peaking last. The end-
state response never reaches Lh, even at long word durations, and (correctly) would
not trigger a word detection.
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Figure 10. Measured chip data for end-state likelihoods for long, short, and in-
complete pattern sequences.



The experiments shown in Figure 10c and 10d involve presenting partially complete
word patterns to the decoder. In both experiments, the duration of the complete
word pattern is 250 ms, the minimum duration resulting in an end-state response
of Lh. Figure 10c shows words with truncated endings, while Figure 10d shows
words with truncated beginnings. In Figure 10c, end-state log likelihood is plotted
as a function of the last excited state in the pattern; in Figure 10d, end-state
log likelihood is plotted as a function of the first excited state in the pattern. In
both plots, as expected, the end-state log likelihood falls below Lh as significant
information is removed from the word pattern.

While performing the experiments shown in Figure 10, the state-decoder and word-
detection sections of the chip had a measured average power consumption of 141
nW (Vdd = 5V ). More generally, however, the power consumption, input probability
range, and the number of states are related parameters in the state decoder system.
The power dissipation of a state decoding system with N states is

NVdd(If + Iv + Iτ + Il) + Pr(N, Vdd) + VddIh

N∑

i=1

(bi(t) − (Il/Ih)). (14)

The first term of this Equation is the static power consumption of the array of state
decoder circuits; Iτ is the static current of the analog delay circuit in Figure 5c.
For the experiments shown in Figure 10, the per-state power consumption due to
this term is approximately 1.5 nW, resulting in 125 nW power dissipation for the
81-state decoder array.

The second term of Equation 14, Pr(N, Vdd), accounts for power dissipation in the
renormalization circuit, and in the circuits that implement the “Word Detection”
and “Recurrent Connection” functions. This term is a complex function of Vdd; some
circuits in these blocks scale linearly with Vdd while other circuits scale quadratically
with Vdd. This term also increases with N ; the bias currents are determined by
parasitic capacitances which scale linearly with the number of states in the system.
For the experiments shown in Figure 10, this term is approximately 16 nW.

The final term of Equation 14 accounts for power consumption due to input proba-
bility currents above the minimum Il current. Due to the small value of Ih used in
the experiments shown in Figure 10, this term makes a negligible contribution to
the total power consumption in this experiment. However, if Ih is set to the max-
imum acceptable value for the fabricated test chip (660nA, for an Ih/Il of 10,000),
the power consumption of this term (3.3µW ) would dominate system power con-
sumption.

5. DISCUSSION

This paper presents a preliminary design of an analog implementation of HMM
state decoding. Intermixed with the design exposition in Section 3 is a critical
assessment of the shortcomings of each part of the design, along with suggestions
for improved implementations. These suggestions are a starting point for a second-
generation state-decoder design, that would serve as a practical building block for
pattern recognition systems. Two key design goals for a second generation design
are improving the continuous-time delay implementation and replacing the switched
renormalization system with a continuous-time approach.



In addition to these circuit improvements, future work involves the examination of
the issues involved in integrating the state decoder into a complete system. To create
a micropower implementation of the wordspotting architecture shown in Figure 2,
each block must be implemented using micropower techniques, not just the state
decoding subsystem.

Fortunately, many signal processing blocks needed for this application have already
been the subject of micropower implementation research. Several generations of mi-
cropower audio pre-processing systems (Watts et al., 1992; van Shaik et al., 1996)
have been implemented and these designs are good candidates for the “Feature De-
tection” block in Figure 2. Micropower implementations of multi-layer perceptrons
(Coggins et al., 1995), radial basis function networks (Delbruck, 1991), or Gaussian
mixture models are suitable for the “Probability Generation” block.

The design of individual signal processing blocks is perhaps the easiest challenge
of this implementation project. Harder tasks include the interfaces between these
blocks, and the compensation of the entire system to temperature and power-supply
variations. Perhaps the hardest task is the creation of an efficient, high-level simu-
lation model for the complete design, that captures the analog nonidealities of each
block. The ultimate design goal of a speech recognition system is low recognition er-
ror. Achieving this goal requires circuit-level and microarchitecture optimizations.
A system simulation that takes into account the nonidealities of the underlying
analog implementation is an essential tool for guiding these optimizations.
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