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Abstract

Single-chip, low-power, programmable digital signal processing sys-
tems are capable of hosting complete speech processing applica-
tions, while consuming a few milliwatts of average power. We
present a power management architecture that decreases the av-
erage power consumption of these systems to 3–10 microwatts, in
applications where speech signals are present with a sufficiently
low duty cycle. In this architecture, a micropower analog signal
processing system, Anawake, continuously analyzes the incoming
signal, and controls the power consumption of the DSP system in
a signal-dependent way. We estimate system power consumption
for Anawake designs optimized for different peak-speech-signal to
average-background-noise ratios.

1. Introduction

Single-chip programmable digital signal processing (DSP) systems (Figure 1),
with integrated RAM, ROM, and A/D and D/A converters, have developed into
suitable platforms for demanding applications such as small-vocabulary, speaker-
independent speech recognition. An example is a single-chip DSP system devel-
oped for cost-sensitive toy products, that supports moderate-quality, isolated-word
speaker-independent recognition with a 10-word vocabulary [1]. This device pro-
vides 4 MIPS of programmable processing power (in addition to dedicated filtering
circuits for speech pre-processing) and consumes 15 mW at 3V. Improvements in
low-power digital design [2], combined with process scaling, have led to predic-
tions [3] that single-chip low-cost DSP systems early in the next decade will offer



0.25mW/MIPS power dissipation, with dynamically-settable performance up to 400
MIPS.

These future systems will support 20-MIPS applications while consuming a few
milliwatts of power. This power specification supports battery operation on AAA
cells, if the application requires a relatively low duty cycle of operation (standard
AAA Nickel-Cadmium cells have a capacity in the range of 220 mA H). For a
speech recognition system, the low duty cycle condition usually is implemented as
a mechanical switch that the user presses to initiate a session. In some speech
recognition applications, however, this “press to begin” model is a distinct liability:
instead, a system that listens continuously for speech input is desired. In some cases,
user interface issues dictate a continuously-listening model; for other applications
(wordspotting systems for surveillance, speech control for the physically disabled)
continuous listening is inherent in the problem definition.

A battery-operated, continuously-listening speech recognition system would require
an implementation with an average power consumption in the 1-10 microwatt range.
Microwatt analog signal processing techniques [4] have been developed for niche
applications such as hearing aids. Microwatt analog pattern recognition systems
have also been developed for implantable medical devices; one recent example, an
intracardiac arrhythmia classifier [5], includes a statistical classifier similar to those
used in speech recognition architectures. Recent research has focused on analog
micropower implementations of other structures used in speech recognition, include
speech feature extraction [6,7] and hidden Markov model state decoding [8]. These
processing systems offer peak microwatt power consumption, permitting the use of
energy sources with low maximum current ratings, such as lithium button batteries.

However, hard-wired analog implementations are best suited to product classes that
do not require extensive customization for each application. Portable speech recog-
nition systems, in contrast, are highly application-specific in nature: the speech
vocabulary and the product behavior are different in each application. These sys-
tems require the flexibility of programmable digital systems.

This paper presents a system architecture for implementing continuously-listening
speech recognition systems that consume milliwatts of peak power, but microwatts
of average power. The architecture combines a single-chip programmable DSP
system with an application-independent micropower analog system. Although we
present this architecture in the context of speech recognition, it can be generalized
to support to other signal processing and pattern recognition applications.
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Figure 1. Block diagram for a single-chip programmable DSP system, with inte-
grated ROM, RAM, and speech codec.



2. Anawake

Single-chip DSP systems, as shown in Figure 1, typically have a micropower sleep
mode; in this mode, processing and A/D and D/A conversion are halted, but the
internal state of the system is preserved. Typically, the processor switches between
normal operation and sleep mode under the control of an external input, (labeled
WakeUp in Figure 1). In systems that include a mechanical switch to start speech
input, the WakeUp signal is toggled by the switch. The processor can also enter sleep
mode under program control.

In the architecture shown in Figure 2, a micropower analog system, Anawake, acts
as a signal-based power management system for a single-chip DSP system. Anawake
has two functional blocks: a speech detector and a 100ms analog delay. The speech
detector monitors the audio input and activates the WakeUp input of the DSP if
a speech signal is present. The analog delay postpones the presentation of audio
input to the A/D converter of DSP chip. Without this delay the beginning of
the speech utterance would be clipped off, seriously degrading speech recognition
accuracy (speech detection requires the examination of about 100ms of a speech
sound).

The operation of the system is straightforward. After a suitable period of time
has elapsed without speech input, the processor enters sleep mode under program
control, switching from milliwatt power consumption to microwatt power consump-
tion. Anawake continues to function, consuming microwatts. The speech detector
constantly monitors the input signal for renewed speech activity, and the analog
delay preserves the last 100ms of audio input. If the speech detection block senses
new speech activity, Anawake toggles the WakeUp signal of the DSP, and the DSP
reverts to its normal processing mode. Upon wakeup, the DSP processes the audio
input of the previous 100ms (held in the analog delay) that includes the start of the
speech utterance.

If speech activity is present in the audio input with a duty cycle D (0 ≤ D ≤ 1), the
power consumption of the architecture shown in Figure 2 is

Pa + (1 − D)Ps + DPn, (1)

where Pa is the power consumption of Anawake, Ps is the power consumption of the
DSP chip in sleep mode, and Pn is the power consumption of the DSP chip while
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Figure 2. The Anawake architecture: a micropower analog chip performs signal-
based power management for a single-chip DSP system.



performing speech recognition. For sufficiently low duty cycles (D # (Pa + Ps)/Pn),
the system power consumption is approximately equal to the sum of the Anawake
power consumption and the sleep-mode power consumption (Pa + Ps).

The function of the Anawake system is independent of the vocabulary and lan-
guage used in the application; all application-specific processing occurs in the pro-
grammable DSP chip. A single Anawake design, implemented as a low-pin-count
chip, or as a macroblock in a standard-cell library, can be used in different speech
applications without alteration.

3. Evaluating Anawake

A modified form of the system architecture shown in Figure 2 could be implemented
entirely in software, dispensing of the Anawake system. A software implementation
is possible if the DSP system has the ability to dynamically reduce its clock rate
under program control, and realize a power savings from this speed reduction.

In this scheme, the functionality of the Anawake system (speech detection and
speech buffering) is implemented as a program running on the DSP. Since this
program would be simpler than the main speech recognition application, the DSP
system could be set to a lower clock rate to run the Anawake emulation. We define
the power consumption of the DSP system while running the Anawake emulation
as Pe.

If the Anawake software emulation detects the presence of speech, it transfers pro-
gram control to the main speech recognition software system. This transfer requires
returning the processing speed of the DSP to its normal rate. As in Section 2, we
define the power consumption of the DSP during speech recognition processing as
Pn. The average power consumption of this system is

(1 − D)Pe + DPn, (2)

where D is the duty cycle of speech input as in Equation 1. If D # Pe/Pn, the
average system power consumption is Pe. In contrast, the average system power
consumption for the architecture that use a hardware implementation of Anawake
is approximately Pa + Ps (for D # (Pa + Ps)/Pn). Recall that Pa is the power
consumption of Anawake, and Ps is the power consumption of the DSP chip in
sleep mode.

An architecture that includes a hardware implementation of Anawake offers clear
benefits if Pa + Ps # Pe. In the following sections, we compare the software and
hardware implementations of Anawake functionality, in the context of this inequal-
ity. In this analysis, we model the single-chip DSP system as predicted in [3], with
0.25mW/MIPS power dissipation during normal processing. We assume the sleep-
mode power dissipation Ps of this single-chip DSP is 1µW . We also assume the
on-chip analog-to-digital conversion system requires 100µW to condition and sam-
ple to speech signal. In the following analysis, we refer to a single-chip DSP with
these specifications as the “reference platform.”

4. Speech Detection

A variety of speech detection algorithms have been developed for use in voice-
processing applications. The difficulty of the speech detection task is a function of



the characteristics of the background noise that is mixed with the speech signal, as
well as the signal-to-noise ratio of the speech signal and the background noise.

4.1 Energy Contour Methods

Energy-contour approaches to speech detection work well in applications where the
peak-speech-signal to average-background-noise ratio is at least 30dB, and where
the background noise is quasi-stationary in nature [9]. Energy-contour methods are
based on the assumption that a speech signal varies in energy at the syllabic rate,
but background noise varies at a much slower rate. These methods estimate the
energy contour of a sound signal using a fast, syllabic time constant, then normal-
ize this contour by an energy estimate taken with a much longer time constant.
This normalized energy contour is relatively independent of the level of background
noise. Simple decision techniques, using thresholding (for on-line applications) or
histograms (for off-line applications), can be applied to the normalized energy con-
tour to accurately predict the start of a speech utterance [9].

A software implementation of an on-line energy contour speech detection algorithm
requires about 0.1 MIPS of processing, for an 8 Khz speech sampling rate. Running
this implementation on the reference platform would consume 125µW of power;
power consumption is dominated by the A/D conversion.

Analog implementations of energy-contour speech detectors are used in speaker-
phone systems and other analog voice processing systems. Typically, these designs
include a precision rectification circuit for energy detection, two energy-averaging
circuits operating at different time constants, and on-line decision circuitry to flag
the start of speech utterances. These circuits could be implemented using MOS
transconductance amplifiers operating in the weak-inversion regime as building
blocks, with an expected power consumption of under 100 nW.

4.2 Spectrally-Enhanced Energy Contour Methods

More sophisticated speech detection algorithms are needed for environments with
higher level of background noise; energy-contour methods perform poorly under
these conditions. One approach to noise-robust speech detection is to compute the
power spectrum of the audio signal, and apply the signal-processing operations used
in energy-contour approaches (time-averaging at multiple time constants, normal-
ization, histograms) in a frequency-dependent way. A DSP implementation of this
approach [10] uses about 6 MIPS of processing; this speech detection algorithm
would consume 1.6 mW of power on the reference platform.

Spectrally-enhanced energy-contour algorithms are also amenable to micropower
analog implementation. A micropower wavelet analog filterbank [6,7] can be used
to provide the initial spectral decomposition; a 64-channel, logarthimic-scale filter-
bank, covering frequencies up to 4 Khz with 60dB dynamic range, consumes about
5µW of power. A variety of weak-inversion building blocks for array and scalar
signal processing, as reviewed in [4], can be used for spectral post-processing and
decision making. As the time constants of these secondary operations are in the
millisecond range, the filterbank is the dominant source of power dissipation.



4.3 HMM-based Methods

The most sophisticated speech detection algorithms integrate speech detection into
a hidden Markov model (HMM) based speech recognition system [9]. In HMM-
based speech recognizers, a state machine formalism is used to represent the words
in the vocabulary; to add speech detection functionality, an extra state is added
to the grammar to represent silence between words. By computing the best path
through this grammar for a given audio input, speech and non-speech segments can
be accurately labeled.

This approach works well if speech and silence are the only types of sounds present in
the audio input. To handle background noise, the front-end of the speech recognition
system, which converts the audio waveform into a spectrally-based feature vector,
is enhanced to generate similar feature vectors for silence and quasi-stationary noise
[11].

As this speech detection approach requires running a complete speech recognition
system continuously (i.e. Pn = Pe, using the notation of Equation 2), it is not a
good candidate for use in an Anawake software emulation. In its original form, this
approach is also unsuitable for a hardware Anawake implementation: an Anawake
speech detector should be application-independent, but this method requires de-
tailed vocabulary knowledge.

However, an application-independent grammar, that uses phonetic classes instead
of vocabulary words to model speech, could be used in this speech detection archi-
tecture. Wordless grammars have been used to model arbitrary speech in a similar
manner in language-identification systems [12].

An HMM-based speech-detection system, using an application-independent gram-
mar, would be a challenging, but plausible, analog micropower design project. The
main building blocks of a such a system (a speech recognition front-end [6,7], a
hidden Markov model state decoder [8] and a probability generation system [5])
have been successfully implemented in micropower analog circuits. These imple-
mentations would suggest a realistic estimate of 8µW for a complete HMM-based
speech-detection system. Integrating these blocks into a coherent, robust system
would be the primary design challenge.

4.4 Analog Delay

A complete power analysis of Anawake must include the power dissipation of the
analog delay. For a given sampling rate, the power dissipation of a sampled analog
delay circuit is a function of the dynamic range of the delay. In the simple Anawake
architecture shown in Figure 2, the audio signal path always passes through the
analog delay; the dynamic range of the analog delay limits the performance of the
system at all times. By including a DSP-controlled switch to selectively bypass the
delay (Figure 3), the dynamic range of the analog delay becomes less critical.

In this scenario, the DSP samples both the delayed signal and the direct signal for
the first 100 ms after returning to normal operation from sleep mode; subsequently,
it only samples the direct signal. The minimal use of the delayed signal makes the
limited dynamic range of a micropower analog delay circuit tolerable. An analog
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Figure 3. Modified Anawake design, to support analog delay systems with a
reduced dynamic range.

delay with a 1µW power budget, organized as an analog memory array under dig-
ital control, would yield a dynamic range of about 40 dB at an 8 KHz sampling
frequency. This estimate assumes the use of simple clocked-voltage-follower delay el-
ements in the memory array. Advanced voltage-mode circuits, or a switched-current
approach [13], may result in a better dynamic range figure.

4.5 Summary

Figure 4 summarizes the power consumption estimates in this section. For both
simple and complex speech detection systems, an Anawake analog implementation
offers a significant power advantage (factors of 50-500) over a software emulation
on the reference platform.
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Figure 4. Bar chart showing the power consumption for systems using Anawake
hardware (shaded bars, representing Pa+Ps) and software Anawake emulation (black
bars, representing Pe). Note logarithmic scale. See text for details on speech detec-
tion methods.



5. Other Applications

Anawake applications are not limited to speech recognition systems. Battery-
operated solid-state speech recorders could use Anawake to support a voice-actuated
record mode. Another potential application for Anawake is power management for
digital hearing aids. Digital hearing aids convert an analog microphone input to dig-
ital form for patient-specific signal processing; the processed signal is reconverted
to an analog signal to drive an earphone. Hearing aids require very low power
consumption, and are principally worn to aid voice communications; blocking out
non-speech sounds to lengthen battery life is an acceptable tradeoff. The latency
imposed by a 100 ms delay, however, is problematical. Modified speech detection
systems, that shorten speech detection time in exchange for a higher false alarm
rate, may make Anawake suitable for this application.

Other candidate Anawake applications involve the processing of non-speech (and
perhaps non-audio) signals. For these applications, the speech detector is replaced
by a detection system for the appropriate signal class. An example application is
a remote, battery-operated seismic telemetry system; spurious vibrations should
be ignored, but rare, earthquake events should be analyzed and reported. For this
application, an Anawake system with a “probable seismic event” detector is needed.

6. Summary

We have presented a system architecture for signal-based power management. This
architecture controls a programmable DSP system with a hardwired micropower
analog system. Using the continuously-listening, battery-powered speech recogni-
tion task as an example, we showed how this architecture results in a system that
consumes a few microwatts of average power, while maintaining the flexibility of a
programmable DSP system.
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