

anaLOG: A Functional Simulator for VLSI Neural Systems

by

John Paul Lazzaro

In Partial Fulfillment of the Requirements

for the Degree of

Master of Science

Computer Science Department

Technical Report Number 5229:TR:86

California Institute of Technology

Pasadena, California

1986

This work supported by the System Development Foundation

c©1986 John Paul Lazzaro

Acknowledgements

Carver Mead, my thesis advisor, deserves special praise for his trusting and
generous support of the anaLOG project. Working with David Gillespie, my re-
search partner, has been a rewarding experience. My undergraduate advisor, Paul
Mueller, and my mother, Marie Lazzaro, are continuing sources of guidance in my
life. Significant contributions to the anaLOG project were made by Mark Bell,
Jerry Burch, Lyn Dupré, Professor Joel Franklin, Andy Fyfe, Glenn Gribble, Scott
Hemphill, Calvin Jackson, Dick Lyon, Mary Ann Maher, John Platt, and the stu-
dents of the CS182 class at Caltech, 1985–1986. This thesis is dedicated to Nancy
Lee Henderson.

This work supported by the System Development Foundation.

Table of Contents

1. ana + LOG = anaLOG . 1
1.1 Introduction . 1
1.2 The LOG Environment . 2
1.3 An Overview of Ana . 3

2. The Mathematics of Ana . 6
2.1 Introduction . 6
2.2 Solving the System of Differential Equations 6
2.3 Solving the System of Nonlinear Difference Equations 7
2.4 Solving the System of Linear Equations 8
2.5 Completing the Algorithm . 8

3. Properties of the Mathematics of Ana 11
3.1 Introduction . 11
3.2 Evaluating the Stability of the Backward Euler Method 11
3.3 Accuracy and Complexity of the Backward Euler Method 12
3.4 The Condition for Convergence of the Newton–Raphson Method . . 13
3.5 The Rate of Convergence of the Newton–Raphson Method 14
3.6 Properties of the Method of Leading Coefficients 15

4. Simulating a Changing System . 17
4.1 Introduction . 17
4.2 Evolving the State of a System . 17
4.3 Criterion for Simulating a System . 18

5. The Modeling Style of Ana . 20
5.1 Introduction . 20
5.2 The Symbolic Evaluation of Partial Derivatives 20
5.3 Modeling Decisions with Fermi Functions 21
5.4 Behavioral Modeling for a Robust Simulation 22

6. The MOS Transistor . 23
6.1 Introduction . 23
6.2 A Simplified Nonlinear Current Source 23
6.3 Output Impedance Extension . 24
6.4 Completing the Model . 24

7. The Transconductance Amplifier . 30
7.1 Introduction . 30
7.2 Basic Amplification Function . 30
7.3 Computing the Scaling Current . 32
7.4 Computing the Output Impedance . 32
7.5 Output Voltage Constraints . 33
7.6 Completing the Model . 33
7.7 The Wide-Range Transconductance Amplifier 34

8. Rectification Circuits . 39
8.1 Introduction . 39
8.2 Basic Rectification Function . 39
8.3 Output Voltage Constraints . 41
8.4 Completing the Model . 41

9. The Horizontal Resistor Circuit . 43
9.1 Introduction . 43
9.2 Basic Resistance Function . 43
9.3 Definition of Control Currents . 45
9.4 Completing the Model . 46

10. The Ganglion Circuit . 48
10.1 Introduction . 48
10.2 Principles of Circuit Operation . 48
10.3 The Ana Model . 50

11. Topics for Further Research . 54

Bibliography . 56

Chapter 1
ana + LOG = anaLOG

1.1 Introduction

The emergence of a very-large-scale-integration (VLSI) design style for analog
systems holds unique simulation challenges. In digital VLSI design, analog circuit
simulators are used for the electrical verification of small circuit sections with high
accuracy. The discrete nature of these systems permits the use of abstract switching
models for the analysis of macroscopic logic and timing behavior. This is indeed for-
tunate, as a circuit simulation of a VLSI system using a traditional analog simulator
is computationally impractical.

Analog VLSI design requires simulation tools that concentrate on the functional
performance of an analog system, as opposed to a fully accurate electrical character-
ization, to verify correct behavior more efficiently. Such a simulator requires models
that capture the functional essence of analog circuit primitives in a computationally
simple manner. In addition, the structure of an analog design needs to be exploited
by creating abstractions of circuit building blocks, rather than simulating circuits
with their primitive description. This approach ultimately results in a hierarchical
description of a large analog system, which can be simulated at different levels of
abstraction, trading off accuracy and efficiency. The higher-level descriptions may
be correct for only certain regions of operation, with range checking to indicate
improper usage. Finally, the numerical methods used to simulate the description
must reflect the unique requirements of functional simulation. By using these tech-
niques, a simulation tool tailored to the verification of analog VLSI systems may
be developed for a workstation environment.

The analog VLSI design style is directed toward system designers, as opposed
to integrated circuit engineers. A successful analog VLSI designer must develop an
intuition for parallel analog computation, as a digital VLSI system designer needs to
develop skills in digital logic and circuit design. The user interface of a traditional
circuit simulator, however, is directed toward an experienced electrical engineer,
being batch mode (with textual input and output), unforgiving to the novice user,
and isolated from other VLSI design tools. Clearly, the user interface of a analog
VLSI simulation tool needs to be made more sympathetic and educational to a
perspective designer from a nonengineering background.

A better simulation user interface portrays the metaphor of an electrical engi-
neering lab bench. Using a bit-mapped display and a pointing device, the user can
draw circuits in a schematic editing environment. As the circuit is being drawn,
however, it is also being simulated, because a circuit under construction on a lab
bench is always in operation. Symbolic multimeters and oscilloscope probes are
available for the display of the ongoing simulation. Schematic voltage and current
sources provide system input, with user control of the excitation, and graphical

indication of source overload. The functional simulator, rather than standing alone,
shares the lab bench with tools for documentation, integrated circuit mask design
and verification, and other simulators.

LOG, an interactive graphical environment capable of hosting tools for simu-
lation, documentation, and integrated circuit layout, has been developed by David
Gillespie at Caltech. This thesis describes an analog functional simulator, Ana,
which includes functional models for a standard cell library of analog computation
building blocks designed by Carver Mead. Ana, LOG, the standard cell library, and
a graphical layout editor form the basis of a design system used in the analog inte-
grated circuits course at Caltech. The remainder of this chapter is an introduction
to the LOG environment, and to the Ana simulator.

1.2 The LOG Environment

The LOG operating system provides a natural framework in which to manipu-
late systems describable as a list of interconnected objects with a static number of
ports. The system includes a schematic editor, using a bit-mapped graphics screen
and a pointing device, and an object-oriented interface mechanism for external pro-
grams. This mechanism allows full integration of tools for simulation, design, and
documentation into LOG without source-code access; it functions as a software bus
for a set of interrelated programs.

The user creates systems in LOG by graphically interconnecting objects, called
gates. Gates are not dynamically definable; they are selected from a predefined
catalog. Their definition can include an association with a tool; a gate thus can
possess type. Each port of a gate, called a pin, also can be typed. When the user
creates an instance of a gate, a node for each pin is created and is added to a global
node list. The node assumes the type of the associated pin. The user edits the data
structure by connecting pins together with wires; redundant nodes are eliminated
from the node list during editing. The pins of a gate always are cognizant of their
respective nodes. Type checking by LOG ensures nodes of different types can never
be merged; type casting is available for exceptions.

The LOG interface mechanism for external programs is based on message pass-
ing. A tool has an interest in gates and nodes of its type. LOG sends messages
to a tool concerning the definition, creation, manipulation, and deletion of these
structures. LOG also sends general messages to a tool, such as “send debugging
information about your tool.” A tool is given access to the entire LOG data struc-
ture while responding to a message, with the understanding that only tool-specific
sections may be modified. LOG also provides a procedure library to support data
structure manipulation and the user interface.

Simulators are tools that predict the transient behavior of a system. Whereas
most tools share only the LOG data structures, simulators share two dimensions
of time. Because simulation and editing should appear to be simultaneous to the
user, each simulator shares CPU time with other simulators and LOG. Multiple

simulators may be used together to predict the behavior of a mixed type system;
LOG manages simulation time as a global resource.

A simulator can respond quickly to most messages, allowing LOG to maintain
a responsive graphical editing environment. Computationally intensive messages
specify a maximum response time constraint; a simulator polices itself. LOG adjusts
this time-slice according to user input activity, allowing transparent switches be-
tween a high-performance simulation environment and a crisp editing environment.
Timed messages have protocols concerning the noncompletion of the message.

The management of simulation time is more complex. LOG begins with simula-
tion time reset to zero; the user may also reset the system. During reset, a message
sent to each simulator requests initialization of the system state. LOG and the user
can request reset, but only simulators can advance simulation time and state. LOG
regulates the simulation through several messages.

The pass message asks a simulator to compute an advance of simulation time
and state for its system. The data structure may not have remained constant since
the last pass message, but all pertinent changes have been reported to the simulator.
A simulator cannot veto a data structure change or reset simulated time; it must
contend with a dynamic system. A simulator reports whether time and state were
successfully advanced as it returns from the pass message; an unsuccessful pass
either implies that more CPU time is needed for simulation, or that the present
data structure is not suitable for simulation.

A simulator advances the state of its own system; simulation time is shared by
all simulators and must be managed globally. LOG allows all simulators to attempt
advancing time; the smallest increase is accepted by LOG, while simulators bidding
larger steps are requested to simulate up to the accepted time step. The tstep
message informs a simulator of the status of its bid. After a uniform time advance,
the simulators update internal system state in lockstep.

1.3 An Overview of Ana

A central aspect of an ideal analog VLSI simulation environment is the simul-
taneous editing and simulation of a system. The LOG operating system provides
an excellent framework for this environment, offering a schematic editor with data
structures appropriate for simulators, a communication system that informs tools
of relevant system changes in an abstract manner, support for multitasking and
multiple simulators, and the global management of a graphical user interface. The
design of an analog simulation tool portraying the lab-bench metaphor in LOG
raises several challenging issues.

In LOG’s multitasking protocol, a tool must control its maximum response time
to a simulation message. Constructing the simulation algorithm as a collection of
distinct, computationally simple tasks is a method of response-time regulation. The
message response can be considered a finite-state machine, executing each task in

proper sequence until the allotted time has been exhausted, then saving the present
position for a future message receipt.

A LOG simulator must contend with preserving the state of an incrementally
changing system. In Ana, each pin of a gate has a small parasitic capacitance.
When a gate is created, the parasitic capacitors are initialized. During the course of
a simulation, these capacitors contain the complete state of the gate. When the data
structure is changed, Ana uses this redundant information to evolve faithfully the
state of the modified system from the original, presenting an illusion of continuous
simulation. System state also can be reset to preset values by the user.

Ana attempts simulation only if every pin of each gate of a system is connected
to some other pin, excepting measurement gates. A system of this nature is defined
as complete. As a result, minor changes can be made transparently, but simula-
tion stops during major editing, preserving system state and avoiding numerical
instability.

The lab-bench metaphor demands robust simulation, as nature always finds
the fixed point! The “soft” circuit modeling style of Ana promotes robustness.
All excitation sources have output impedance and overload limiting. A capacitive
path fully couples all pins of a gate to each other and to ground, and all active
outputs posses DC impedance. Power and ground, the sole “hard” signal sources,
are syntactically checked for shorts. Soft modeling allows a system to absorb abrupt
changes gracefully.

The mathematical modeling style of Ana also contributes to its stable character-
istics. All functions used in gate description are continuous with fully defined first
derivatives throughout their range. The numerical methods in Ana use symbolic
derivates, not finite differences. The avoidance of gross roundoff errors, and the use
of functions with defined derivates, both increase stability.

An adaptive implementation of backward Euler integration is used in Ana. A
full description and analysis of the method is given in Chapter 2 and Chapter 3.
The implementation offers robust performance, with medium accuracy and com-
putational simplicity. A noniterative equation solver, special methods for evolving
the state of a dynamic data structure, and adaptive relaxation of accuracy during
difficulty also aid convergence.

The responsiveness and flexibility of the LOG user interface must also extend to
simulation tools. Ana can simulate a screen-sized system with sufficient speed for
an interactive session. A hierarchical modeling system drives this performance; the
library contains concise models for many common circuits. The simple, adaptive
integration method also contributes to efficiency.

Equally important to user productivity is the leverage of the Ana user inter-
face. Visual simulation feedback allows the quick correction of schematic entry
errors; model parameters and system state can be changed with a single keystroke.
Schematic multimeters can be added to display results; the simulator easily inter-
faces to oscilloscope and plotting tools for graphical output. The pointing device

can become a status “probe” to scan the system quickly, and schematic wires can
“glow” in various colors to show state. Many gates have warning displays to relate
abnormal conditions; sources have “switches” to vary excitation. All these features
can be activated without stopping the simulation.

Chapter 2
The Mathematics Of Ana

2.1 Introduction

In the LOG data structure, a system is described as a list of nodes N1, . . . , Nn

and a list of gates G1, . . . , Gg. A gate has an arbitrary number of pins, p. Each pin
is connected to exactly one node. For a gate Gk with pins numbered 1, . . . , l, . . . , p,
the node of pin l is given by the function Node(l). The current global simulation
time is defined as t.

Ana views this system as a lumped electrical circuit. There is a voltage potential
Vi between each node Ni and a common reference. The behavior of a gate Gk is
defined as a set of functions P k

1 , . . . , P k
l , . . . , P k

p , where

P k
l ≡ P k

l

(
VNode(1), . . . , VNode(p),

dVNode(1)

dt
, . . . ,

dVNode(p)

dt
, t

)

is the current out of Node(l) contributed by pin l of gate Gk.

By Kirchoff’s current law, the sum of all the current out of a node must equal
zero. The system of differential equations

F̂i

(
V1, . . . , Vn,

dV1

dt
, . . . ,

dVn

dt
, t

)
≡

∑
all Gk

Node(l)=i

P k
l = 0 1 ≤ i ≤ n

fully describes the original lumped-circuit system. Ana numerically solves these
equations to obtain simulation results.

2.2 Solving the System of Differential Equations

Ana first converts this system of differential equations into a system of difference
equations. The system variables V1, . . . , Vn are thus transformed from continuous
to discrete; Vi is now defined at a specific time tz and is notated V tz

i . Ana requires
its numerical methods to be highly robust, with medium accuracy and good effi-
ciency. It is shown in Chapter 3 that the backward Euler method [1] meets these
requirements. This method converts the differential equation

dV

dt
= f (V, t)

into the difference equation

V tz+∆t − V tz

∆t
= f

(
V tz+∆t, tz + ∆t

)
,

where the timestep ∆t is the distance between each discrete time value.

Using this method, the system of differential equations

F̂i

(
V1, . . . , Vn,

dV1

dt
, . . . ,

dVn

dt
, t

)
= 0 1 ≤ i ≤ n

is transformed into the system of difference equations

F̂i

(
V tz+∆t

1 , . . . , V tz+∆t
n ,

V tz+∆t
1 − V tz

1

∆t
, . . . ,

V tz+∆t
n − V tz

n

∆t
, tz + ∆t

)
= 0 1 ≤ i ≤ n.

It is simple and convenient to derive a new system F ≡ F̂ , where

Fi

(
V tz

1 , . . . , V tz
n , V tz+∆t

1 , . . . , V tz+∆t
n ,∆t , tz + ∆t

)
= 0 1 ≤ i ≤ n.

Ana solves this system of difference equations to simulate the electrical system.
When the simulation begins, tz = to, and V to

1 , . . . , V to
n are the initial conditions of

the former differential equation. Algorithms for setting initial conditions correctly,
and for choosing a suitable ∆t throughout a simulation, are shown in Section 2.5.

2.3 Solving the System of Nonlinear Difference Equations

At time tz of a simulation, the present state V tz
1 , . . . , V tz

n is known. After an
appropriate ∆t is chosen, V tz+∆t

1 , . . . , V tz+∆t
n are the only remaining unknown vari-

ables. F becomes the system of nonlinear algebraic equations

Fi (v1, . . . , vn) ≡ Fi

(
V tz+∆t

1 , . . . , V tz+∆t
n

)
= 0 1 ≤ i ≤ n.

The Newton–Raphson method [2] can be used to transform this nonlinear algebraic
system into a linear one. Given an approximate solution vw

1 , . . . , vw
n , the method

produces a better approximation vw+1
1 , . . . , vw+1

n , where vw+1
i = vw

i + δi. It requires
the existence of a good initial guess of the solution v0

1, . . . , v
0
n ; Ana chooses v0

i = V tz
i .

By expanding the system F (vw
1 + δ1, . . . , v

w
n + δn) by Taylor’s theorem and keeping

only first-order terms, a system of of linear algebraic equations

Fi (vw
1 , . . . , vw

n) + δ1
∂Fi

∂v1

∣∣∣∣∣
w

+ . . . + δn
∂Fi

∂vn

∣∣∣∣∣
w

= 0 1 ≤ i ≤ n

is produced. Solving this system yields δ1, . . . , δn, and ultimately the improved
approximation vw+1

1 , . . . , vw+1
n . This process is iterated until a sufficiently close

approximation is achieved; later sections include an analysis of the convergence
properties of this method, and the establishment of a termination criterion.

2.4 Solving the System of Linear Equations

The n × n linear equation system produced by the Newton–Raphson method
is usually sparse, because typical electrical circuits are sparsely connected. Sparse
equation solution methods are more efficient than general techniques, but they are
more complex to implement. In addition, sparse methods are iterative in nature;
a robust implementation requires additional complexity. The current prototype of
Ana uses a general noniterative solution method, the method of division by leading
coefficients [2].

Using the notation aik ≡ ∂Fi
∂vk

∣∣∣
w

, bi ≡ −Fi (vw
1 , . . . , vw

n) the system of linear
equations F can be rewritten as

ai1δ1 + . . . + ainδn = bi 1 ≤ i ≤ n.

To solve for δ1, . . . , δn, each nonzero leading coefficient ai1 is first normalized. The
equation with the former ai1 of largest absolute magnitude, called the pivot equation,
is then subtracted from all others, reducing the n × n system to a (n − 1) × (n −
1) system. This procedure is repeated until a single equation in one unknown
remains. All δi can then be obtained by direct substitution. A division by zero
during calculation indicates a singular system.

2.5 Completing the Algorithm

The previous presentation leaves many details unspecified. The selection of
a proper ∆t for the backward Euler method, the iteration termination criterion
for the Newton–Raphson method, and the correct response to a singular system
by the linear equation solver are all unaddressed. In Ana, an adaptive control
system is used to resolve these issues and complete the simulation algorithm. In the
following discussion, all symbols in calligraphic type are user-accessible simulation
parameters.

A singular system of linear equations has no solution. A nonsingular system
of linear equations may not be numerically solvable, as a result of accumulated
roundoff error during calculation. If a system of equations cannot be solved, the
Boolean function singular is true.

The termination criterion for the Newton–Raphson method compares two suc-
cessive approximate solutions of the nonlinear system. A relative comparison must
be augmented by an absolute comparison to accommodate solutions of small mag-
nitude without roundoff error. Ana considers a system solved at the end of iteration
w, if for every i, either the relative condition∣∣∣∣∣v

w−1
i − vw

i

vw−1
i

∣∣∣∣∣ ≤ R

or the absolute condition
|vw

i | ≤ A
is met, where R is the relative accuracy and A is the absolute accuracy. If this
condition is met, the Boolean function converged is true. If the initial guess of the
solution v0

1, . . . , v
0
n is not sufficiently close to the actual solution, Newton–Raphson

may diverge. M , the maximum number of iterations, is a system variable under
adaptive control. If the algorithm does not converge after M iterations, it probably
never converges. If this condition holds, the Boolean function toomany is true.

Once a solution has been obtained, the error of the backward Euler method can
be checked. The larger the voltage change for a timestep, the larger the approxi-
mation error. Ana accepts a solution V tz+∆t

1 , . . . , V tz+∆t
n if for every i,

|V tz+∆t
i − V tz

i | ≤ C,

where C is the maximum permissible voltage change for a timestep. If this condition
is false, but

∆t ≤ S,

where S is the smallest reasonable timestep, Ana still accepts the solution. This
condition sacrifices accuracy for a robust simulation during difficult transitions; in
practice, it is almost always invoked immediately after a data-structure change. If
a solution is not accepted, the Boolean function toobig is true.

The choice of an improper timestep may result in a solution V tz+∆t
1 , . . . , V tz+∆t

n
that is physically impossible. Ana accepts a solution only if for all i,

L ≤ V tz+∆t
i ≤ H

where L and H are the lowest and highest plausible voltages respectively. If a
solution is rejected, the Boolean function overflow is true.

An appropriately small ∆t ensures an accurate simulation. A ∆t smaller than
necessary is inadvisable, as it needlessly increases computational cost. Q is the
range of efficient solutions. If for all i

|V tz+∆t
i − V tz

i | ≤
C
Q

,

the present ∆t is inefficient, and in future simulation should be increased. The
Boolean function toosmall is true if the current timestep is suboptimal.

The adaptive algorithm uses the previous Boolean definitions to control the sim-
ulation and update the variables ∆t and M . At the end of every iteration w, Boolean
conditions for accepting the present result and halting the simulation attempt are
checked. If these conditions are both false, another iteration is performed.

If the Boolean condition singular or toomany or overflow is true, the simulation
attempted has failed, due to an equation singularity, a nonconverging system, or a

physically impossible result. The timestep ∆t is reduced by the timestep divisor D.
The simulation is halted, and a new attempt to simulate the system begins.

If the condition converged and not toobig is true, Newton–Raphson has con-
verged with a solution of desired accuracy, and the simulation result is accepted.
If toosmall is true, ∆t is unnecessarily small, and is increased by a factor D. If ∆t
grows arbitrarily large, the simulator becomes unresponsive to sudden excitation.
To prevent this condition, ∆t is bounded by the maximum timestep T . Convergence
was achieved in w iterations; if the next simulation attempt does not converge in
I ×w iterations, where I is the iteration factor, an improper ∆t was chosen. Thus
M is assigned the value I × w, and a new simulation attempt begins.

In many cases, Ana is used to find the DC fixed point of a system, and the
simulation accuracy is irrelevant. In this case, the same control system is used, but
toobig always returns false, and toosmall is always returns true.

Chapter 3
Properties of the Mathematics of Ana

3.1 Introduction

When choosing a numerical method for a particular application, robustness,
computational complexity, and accuracy are three major considerations. The per-
formance requirements of Ana, detailed in Chapter 1, clearly address these three is-
sues. A robust simulation algorithm is essential to portray the lab-bench metaphor.
In addition, computationally simple numerical methods are necessary for interactive
response. Finally, since Ana is a functional simulator, highly accurate results are
not needed. In this chapter, properties of the numerical methods used in Ana are
compared with these desired characteristics.

3.2 Evaluating the Stability of the Backward Euler Method

The behavior of a linear resistor R and capacitor C connected in parallel can
be described by the differential equation

dV

dt
= − 1

RC
V ≡ −λV

where V is the voltage across the components. The analytical solution of this
equation is V (t) = Vo exp (−λ (t− to)) , where to and Vo are initial conditions.

To analyze the stability of a numerical method for solving differential equations
[1], it is interesting to compare its result for this problem with the correct solution
V (t). Recall that the backward Euler method converts the differential equation

dV

dt
= f (V, t)

into the difference equation

V tz+∆t − V tz

∆t
= f

(
V tz+∆t, tz + ∆t

)
.

Applying this method to the test problem yields, after algebraic manipulation, the
ratio

V tz+∆t

V tz
=

1
1 + λ∆t

≡ Xn(λ∆t).

In contrast, the analytic solution to this test problem produces the ratio

V tz+∆t

V tz
=

exp(−λ(t + ∆t))
exp(−λt)

= exp(−λ∆t) ≡ Xa(λ∆t).

Note that Xa(0) = Xn(0) and Xa(∞) = Xn(∞). In addition, the error function
E(λ∆t) = |Xa(λ∆t) − Xn(λ∆t)| is bounded for all 0 < λ∆ < ∞. A numerical
method is called A-stable if its solution to the test problem has these desirable
properties. For an A-stable method, the choice of a timestep ∆t affects only the
accuracy, not the stability, of the test-problem solution.

This test problem is relevant to circuit simulation for several reasons. A typical
analog system may have many RC subcircuits. At a specific time in the simulation,
however, only a few of these subcircuits significantly affect system performance.
An A-stable method allows an appropriate ∆t to be chosen to track the significant
subcircuits; a method that is not A-stable may require that a smaller timestep be
chosen simply to ensure robust operation. In addition, note that any nonlinear
differential equation

dV

dt
= f (V, t)

may be approximated by the Taylor expansion

dV

dt
=

∂f

∂V
(V − Vo) +

∂f

∂t
(t− to) + f (Vo, to) .

Over a small interval (to, to + ∆t), ∂f
∂V can be approximated by ∆t, yielding

dV

dt
= ∆t(V − Vo) + F (Vo, to) .

The term F (Vo, to) rarely affects stability. Therefore, the behavior of a numeri-
cal method on the test problem can indicate its stability when solving arbitrary
nonlinear differential equations.

3.3 Accuracy and Complexity of the Backward Euler Method

The definition of the backward Euler method may be rewritten as [1]

V tz+∆t − V tz −∆tf
(
V tz+∆t, tz + ∆t

)
= 0.

If the numerical method is exact, the function

D(tz,∆t) ≡ V (tz + ∆t)− V (tz)−∆tf (V (tz + ∆t) , tz + ∆t)

is equal to zero, where V (t) is the true solution of the differential equation. The
function D(tz,∆t), called the local truncation error, is a measure of the error of
a numerical method. Replacing V (tz + ∆t) in the definition of D(tz,∆t) by the
Taylor series expansion

V (tz + ∆t) = V (tz) + ∆t
dV (tz)

dt
+

(∆t)2

2!
d2V (tz)

dt2
+ · · ·

yields the expression

D(tz,∆t) =
(∆t)2

2!
d2V (tz)

dt2
+ · · · .

Therefore, the local truncation error of the backward Euler method is O((∆t)2).
The order of the local truncation error indicates the size of ∆t necessary to achieve
a certain accuracy, and thus is an indication of the computational complexity of
the numerical method. Most simple numerical methods of higher order than is the
backward Euler method are not A-stable, and therefore are unsuitable for use in
Ana.

3.4 The Condition for Convergence of the Newton–Raphson Method

Given an approximate solution vw of the nonlinear algebraic equation f(v) = 0,
the Newton–Raphson method produces a better approximation

vw+1 = vw − f(vw)
f

′(vw)
≡ φ(vw)

as described Chapter 2. This iterative process continues until a sufficiently accurate
solution is obtained, as measured by the error function E(w) ≡ |vw+1 − vw|. For
robust operation, each successive iteration must produce a smaller E(w). The
condition for convergence is shown below [2].

For the correct solution vc, the equation vc = φ(vc) clearly holds, if f
′
(vc) 6=

0. Subtracting this equation from the iteration equation vw+1 = φ(vw) gives the
expression

vc − vw+1 = φ(vc)− φ(vw).

By the mean value theorem, the right side of the equation can be rewritten as

φ(vc)− φ(vw) = (vc − vw)φ
′
(ξw) vw ≤ ξw ≤ v.

Substitution yields the expression

vc − vw+1 = (vc − vw)φ
′
(ξw).

The condition of convergence for iteration n−1 is obtained by multiplying together
instances of this equation for 0 ≤ w ≤ n − 1, which produces, after algebraic
manipulation, the expression

vc − vn = (vc − v0)φ
′
(ξ0)φ

′
(ξ1) · · ·φ

′
(ξn−1).

Note if |φ′
(v)| < 1 throughout the range (v0, vc), this equation can be rewritten as

|vc − vn| = |vc − v0|mn,

where m < 1. In this event, the error |vc − vn| → 0 as n → ∞, and the process
converges.

This condition can be easily expressed in terms of the initial function f(v).
Recalling the definition of φ,

φ
′
(v) =

d

dv

(
v − f(v)

f
′(v)

)
=

f(v)f
′′
(v)

(f ′(v))2
.

Thus, for the convergence condition |φ′
(v)| < 1 to be true in the neighborhood of

the initial guess v0, the inequality

|f(v0)f
′′
(v0)| < |f

′
(v0)|2

must hold. Note that, if v0 is sufficiently close to the correct solution vc, f(v0) → 0
and the inequality is valid, if f

′
(vc) 6= 0. Thus, the practical condition for con-

vergence is the presence of a good initial guess v0. This analysis is invalid if f is
discontinuous, because the mean value theorem does not hold over the entire range
of the function.

3.5 The Rate of Convergence of the Newton–Raphson Method

The rate of convergence of an iterative algorithm is a measure of its computa-
tional cost as a function of solution accuracy. This measure is easily derived for the
Newton–Raphson method [3]. If the solution of the nonlinear algebraic equation
f(v) = 0 is vc, an approximate solution vw can be written as vc + εw. The iteration
equation

vw+1 = vw − f(vw)
f

′(vw)

can therefore be rewritten as

εw+1 = εw −
f(vc + εw)
f

′(vc + εw)
.

The Taylor series expansions of f and f
′
around vc are

f(vc + εw) = εwf
′
(vc) +

ε2
w

2
f

′′
(vc) + · · ·

f
′
(vc + εw) = f

′
(vc) + εwf

′′
(vc) + · · · .

Using these expansions, the expression

εw+1 = εw −
εwf

′
(vc) + ε2w

2 f
′′
(vc) + · · ·

f
′(vc) + εwf

′′(vc) + · · ·

is obtained, which after simplification yields

εw+1 =
εwf

′
(vc) + ε2

wf
′′
(vc) + · · · − εwf

′
(vc)− ε2w

2 f
′′
(vc)− · · ·

f
′(vc) + εwf

′′(vc) + · · ·
.

Truncating higher-order terms gives the final approximation

εw+1 ≈
ε2
wf

′′
(vc)

2f
′(vc)

.

The error in the approximate solution vw decreases quadratically with each itera-
tion, and thus the rate of convergence for Newton–Raphson method is second-order.
Methods that are of higher order than is Newton–Raphson typically have complex
iteration procedures that offset their faster rate of convergence.

3.6 Properties of the Method of Division by Leading Coefficients

The method of division by leading coefficients is used in Ana to solve systems
of linear algebraic equations. The stability and accuracy of this method are limited
only by the inexact nature of a binary real number representation. For typical Ana
systems of moderate size, these limitations are not significant.

The computational complexity of the method is derived easily. Recall from
Chapter 2 that the method reduces an m×m system

ai1δ1 + . . . + aimδm = bi 1 ≤ i ≤ m.

to an (m − 1) × (m − 1) system by dividing each each equation by its leading
coefficient ai1, and then subtracting one equation from the others. This reduction
requires m2 divisions and m(m− 1) subtractions. The reduction of a n× n system
of equations to a single equation thus requires

n−1∑
m=1

m2 =
n(n + 1)(2n + 1)

6
= O(n3)

divisions and

n−1∑
m=1

m(m− 1) =
n(n− 1)(2n− 1)

6
− n(n− 1)

2
= O(n3)

subtractions. Completing the solution by direct substitution requires

n∑
m=1

m =
n(n + 1)

2
= O(n2)

multiplications and
n−1∑
m=1

m =
n(n− 1)

2
= O(n2)

subtractions. Thus, the method is O(n3) in both multiplications and subtractions.
For sparse systems, there are more efficient methods for solving systems of linear
equations. For the prototype of Ana, the simplicity of the method of leading coef-
ficients is desirable; however, the final production version of Ana will use a more
efficient sparse method.

Chapter 4
Simulating a Changing System

4.1 Introduction

During the simulation of a system of gates G1, . . . , Gg and nodes N1, . . . , Nn,
the user may at any time alter the data structure, producing a new system with
gates G′

1, . . . , G
′
g′ and nodes N ′

1, . . . , N
′
n′ . When the data structure is changed, the

state of the new system must be evolved from the old, maintaining the illusion of
a continuous simulation. The techniques Ana uses to evolve system state are the
focus of this chapter.

The state of a system is fully expressed by the voltages V1, . . . , Vn associated
with nodes N1, . . . , Nn. To aid the evolution of the system state during changes,
this information is redundantly present in the list of gates G1, . . . , Gg. For a gate Gk

with pins numbered 1, . . . , l, . . . , p, each pin l is associated with a voltage vl. The
voltages v1, . . . , vg are used as the state variables for all memory elements contained
in the gate Gk, because under normal circumstances, VNode(l) = vl. After a data-
structure change, however, this may not be true. Re-establishing the condition

VNode(l) = vl ∀l, ∀G′
k

while maintaining the illusion of a continuous simulation is the main task of the
state-evolution algorithm.

LOG reports data-structure changes on an atomic level, as messages describing
the alteration of a single gate, node, or parameter. Parameter changes do not affect
the structure of the system state; simulation can continue immediately after their
receipt. Node and gate operations, however, fundamentally change the system.
Most screen-editing operations decompose into multiple node and gate messages,
all sent before LOG resumes simulation messages.

4.2 Evolving the System State

The algorithm for state evolution consists of two sections. The first section is
the response of Ana to each atomic transformation reported by LOG. The second
section operates after all atomic changes have made, and re-establishes the condition

VNode(l) = vl ∀l, ∀G′
k

for the new system. The first section is necessary to exchange information from the
old system to the new before the latter disappears.

The first section of the algorithm is a collection of state-transfer rules for atoms.
When a new node is created, its state Vi is undefined. When a node Ni is split into

two new nodes Nj and Nk, Vj and Vj retain the value Vi. When two nodes Nj and
Nk are combined into a single node Ni, Vi arbitrarily takes on the value Vj or Vk,
preferring a defined state. The transfer rules for gates are similar. When a new
gate Gk is created, the state of its pins v1, . . . , vp is undefined. When a copy of a
gate is made, the copy keeps the state of the original gate.

The second section of the algorithm initializes all undefined nodes and pins.
First, all undefined nodes Ni are initialized to the defined state vl of an arbitrary
pin associated with the node. Then, all undefined pin voltages vl are initialized to
the state Vi of the node associated with the pin, if defined. Finally, all remaining
undefined nodes and pins are set to the reference voltage.

The condition VNode(l) = vl now holds in all situations, except the connection of
two defined pins to a single node. In this latter case, the simulation still is permitted
to begin. Each gate connected to the node looks to its own vl for state information,
and influences the new V tz+∆t

i for the node, effecting a weighted average of the
dissimilar vl’s. After the first timestep of simulation is completed, VNode(l) = vl

again holds for the entire system.

This algorithm presents an intuitive evolution of state to the user. When a gate
is created and added to a circuit, it assumes the state of the appropriate nodes.
When a gate is removed from a circuit, it maintains its state. Subsystems can be
copied with state intact. After two pins with different states are connected to each
other, the simulation displays the resultant “fighting.” At the start of a simulation
session, the nodes of a system must “charge up” to a value, which is similar to
applying power to a circuit at a lab bench.

4.3 Criterion for Simulating a System

In circuit theory, it is easy to create systems that are overconstrained and there-
fore have no solution. When using circuit theory to analyze a physical system, over-
constrained systems indicate unrealistic component modeling. Future sections de-
tail the soft modeling style of Ana, which makes the creation of an overconstrained
system virtually impossible. Although the simulation of virtually any system is
possible with Ana, there are valid reasons not to simulate certain systems.

Generally speaking, there are two types of circuit editing. Major editing in-
volves the schematic capture of a large circuit section, and is primarily a data-entry
task. Incremental editing involves the small alteration of an existing system, often
in response to simulation results. Simulation during major editing is undesirable. A
system under construction does not have a meaningful state, and the heuristic algo-
rithm for evolving state may produce senseless results. When system construction
is finished, the system state may be random, forcing the user to reset Ana to begin
useful simulation. Simulation during incremental editing, however, is essential to
the Ana user interface.

Ana distinguishes incremental editing from major editing by examining the data
structure. Kirchoff’s current law states that the sum of all the current into a node
must be zero. Nodes associated with only one pin force the current through the pin
to be zero, which is normally an uncharacteristic behavior of a useful circuit. Ana
defines a system in which every node is connected to at least two nonmeasurement
pins as a complete system, on which major editing is not occurring. Ana simulates
only complete systems. This definition works well in practice, except for the oc-
casional finished system that is not “complete!” The addition of a small parasitic
capacitor to the offending node solves the problem.

Chapter 5
The Modeling Style of Ana

5.1 Introduction

As specified in Chapter 1, component models in an analog VLSI simulator must
be robust, efficient, and functional. To meet these performance requirements, gate
models in Ana follow a set of guidelines for robust simulation, and use a library of
functions suited for the efficient description of MOS systems. Chapter 6 details the
function library; the modeling style is the focus of this chapter.

The modeling guidelines address both the mathematical form and the behavioral
function of a gate description. Mathematically, the preferred method of partial
derivative evaluation for the Newton–Raphson method is given, and continuous
techniques are shown for describing discontinuous gate behavior. The functional
guidelines dictate parasitic elements in all gates, to prevent overconstrained systems
and physically impossible simulation results.

5.2 The Symbolic Evaluation of Partial Derivatives

As discussed previously, the behavior of a gate Gk with pins 1, . . . , l, . . . , p is
defined as a set of functions P k

1 , . . . , P k
l , . . . , P k

p , where

P k
l ≡ P k

l

(
VNode(1), . . . , VNode(p),

dVNode(1)

dt
, . . . ,

dVNode(p)

dt
, t

)

is the current out of Node(l) contributed by pin l. The functions can be redefined
with respect to the gate coordinate system, yielding the simpler expression

P k
l ≡ P k

l

(
V1, . . . , Vp,

dV1

dt
, . . . ,

dVp

dt
, t

)
.

By applying the backward Euler method, these functions can be rewritten in finite-
difference form. For the solution at a specific time tz + ∆t, the functions become
P k

l ≡ P k
l (v1, . . . , vp), where vl ≡ V tz+∆t

l . To solve a set of nonlinear algebraic
equations that include these functions, the Newton–Raphson method requires the
evaluation of the set of partial derivatives

∂P k
l

∂v1
, . . . ,

∂P k
l

∂vn

as well as the function P k
l .

In the Ana library, the computation of partial derivatives is done by the numer-
ical evaluation of the symbolic derivatives of P k

l , rather than by employing a finite

difference method. The symbolic method is more accurate than is that of finite
differences, resulting in quicker convergence and simulation stability. When com-
puting a function P k

l with its full set of symbolic derivatives, redundant evaluation
can be eliminated through clever factoring, lessening the efficiency advantage of the
finite difference method.

5.3 Modeling Decisions with Fermi Functions

The function P k
l should be continuous with respect to all variables vl, for several

reasons. A good initial guess of v0
1, . . . , v

0
p is required for convergence of the Newton–

Raphson method; around a discontinuity, such a guess is impossible. In addition,
to use the symbolic method of partial-derivative evaluation, the first derivative of
P k

l with respect to all pin potentials must be fully defined. Electrical components,
however, often exhibit sharp transitions. A set of switching functions with fully
defined derivatives is used in the Ana gate library to describe decisions.

The Fermi function has a fully defined first derivative and exhibits the desired
strong switching behavior. It is defined as

Fe (v) ≡ 1
1 + exp(v/vf)

,

for the domain of all real v. The range of the function is bounded by [0, 1]. For
v/vf � 0, Fe → 1, whereas for v/vf � 0, Fe → 0. The switching slope at zero
is inversely proportional to 4vf . The switching point can be shifted to v̂ by the
substitution v ≡ v′ − v̂, and the function RFe (v) has the expanded range [0,R].

Fermi functions can be easily used to make more complex decisions. The switch-
ing polarity can be reversed with the function Fe (v) ≡ 1 − Fe (v). Given two de-
cisions Fe (v1) and Fe (v2), the binary and decision is Fe (v1)Fe (v2). With the and
and not functions available, any Boolean logic expression can be synthesized. The
maximum and minimum functions can also be produced. The expressions

max(v1, v2) ≡ v1Fe (v2 − v1) + v2Fe (v2 − v1)

and
min(v1, v2) ≡ v2Fe (v2 − v1) + v1Fe (v2 − v1)

display the technique.

5.4 Behavioral Modeling for a Robust Simulation

Several precautions must be taken in the modeling of components to ensure a
stable and sensible simulation. Inadequate modeling of parasitic capacitances can
remove a transient behavior that is necessary to achieve steady state simulation con-
ditions. The use of ideal voltage and current sources can result both in unsolvable,
overconstrained systems and in underconstrained systems that exhibit physically
impossible behaviors. The Ana gate library uses systematic techniques to avoid
these problems.

To ensure the proper transient behavior of a gate Gk with pins 1, . . . , l, . . . , p,
there must be a capacitive path between each pin l and the other p − 1 pins. In
addition, there must be a capacitive path between each pin and the reference node.
If the physical component does not exhibit parasitic behavior, the capacitance values
chosen should be small enough to have negligible effect on simulation accuracy.
This interconnection technique ensures that a gate with only one driven pin has a
transient path to steady-state operation.

Several parasitic elements are added to voltage and current sources in Ana to
prevent simulation difficulties. Linear resistors are added to independent voltage
sources to model output impedance. Fermi functions are used to limit independent
current sources; for a current source Io connected across a voltage v, the expression

i = IoFe (v̂ − v)

limits the output current i when the output voltage is below v̂. When parasitic
elements cause a qualitative change in independent source behavior, graphical no-
tification of limiting appears on the schematic gate symbol. All MOS devices are
provided with output impedance; the functional form is shown in Chapter 6.

Chapter 6
The MOS Transistor

6.1 Introduction

The electrical characteristics of the MOS transistor are well known; Mead and
Maher [4] have developed an accurate device model from first principles. The MOS-
FET model in Ana is an engineering approximation of a device physics model, which
efficiently captures the first-order behavior of the transistor. It is expressed as a
combination of simpler functions, which also are useful for manual circuit analysis.
These functions are used to describe more complex gates in the Ana library, as
shown in later chapters.

In Ana, the MOS transistor is modeled as a nonlinear, voltage-controlled current
source. The device has three terminals—named source, drain, and gate—with volt-
age potentials Vs, Vd, and Vg relative to the reference node. Differential voltages are
notated with multiple subscripts. The gate is an isolated control terminal, whereas
the source and drain are the current source terminals. The current Ids is a function
of all three potentials. The analysis in this chapter assumes an N-channel device;
for a P-channel transistor, reverse the signs of all doubly subscripted variables in
the presentation.

The behavior of the device is symmetric with respect to Vds. If Vds > 0, current
flows from drain to source, and |Ids| = f(Vgs, Vds). Conversely, for Vds < 0, current
flows from source to drain, and |Ids| = f(Vgd, Vds). Note that, if Vds equals zero,
no current flows through the transistor. The behavioral symmetry of the MOS
transistor is reflected in the full mathematical symmetry of the Ana model; in the
following discussion, features are defined for forward current flow, then extended to
the reverse-direction flow.

6.2 A Simplified Nonlinear Current Source

As noted, when Vds > 0, current flows from drain to source, and |Ids| =
f(Vgs, Vds). As a first approximation to Ids for forward current flow, a function
Ic(Vgs) can be defined. The function has two regions. For 0 ≤ Vgs ≤ Vt, where Vt is
the threshold voltage of the transistor, Ic is exponentially dependent on Vgs. This
subthreshold region has the functional form

Io exp(Vgs/Vo),

where Io and Vo are transistor parameters. For Vgs ≥ Vt, Ic has a square dependence
on Vgs. This space-charge limited region continues throughout the normal operating
range of the device.

1

By applying current continuity at Vgs = Vt, and using Fermi functions, the
expression

Ic (Vgs) ≡ Io exp (Vgs/Vo) Fe (Vgs − Vt) + aV 2
gs Fe (Vgs − Vt)

can be defined, where a ≡ (Io exp(Vt/Vo))/V 2
t . Because of the symmetry of the de-

vice, Ic(Vgd) is an approximation of the reverse current magnitude |Ids| = f(Vgd, Vds)
when Vds < 0.

6.3 Output Impedance Extension

The MOS transistor has a finite output impedance. The Ana MOS model
approximates this behavior as a linear current dependence on Vds throughout the
model range, as proposed by Early. For forward current flow, the expression

If ≡ Ic(Vgs)G(Vds)

can be defined, where

G(Vds) ≡
(
1 +

Vds

Ve

)
and Ve, the Early voltage, is a transistor parameter. Likewise, in the reverse direc-
tion, where Vds < 0, the current magnitude can be expressed as

Ir ≡ Ic(Vgd)G(Vsd).

By using Fermi functions, the current magnitude can be approximated over the
entire range of Vds as

It ≡ If Fe (Vds) + Ir Fe (Vds) .

Note that the transition of It around Vds is not smooth. The next section of the
chapter addresses this issue.

6.4 Completing the Model

The behavior of an MOS transistor around Vds = 0 is dependent on the region
of operation. In the subthreshold region, full current is delivered for |Vds| ≥ Vo. For
|Vds| < Vo, current magnitude decreases, reaching zero at Vds = 0. This behavior is
approximated by the expression

Ids = It tanh
(3Vds

Vo

)
.

The hyperbolic tangent argument ensures that Ids ≈ It when Vds ≥ Vo. Also note
sgn(Ids) = sgn(Vds), correctly modeling bidirectional device behavior.

In the space-charge limited region, current derating begins at Vds = Vgs − Vt in
the forward direction, and at Vsd = Vgd − Vt in the reverse direction. Using Fermi
functions, the previous equation can be modified to approximate this behavior,
producing

Ids = It tanh
(

3Vds

Vo + Vf + Vr

)
,

where
Vf = Vgs Fe (Vgs − Vt) Fe (Vds)

and
Vr = Vgd Fe(Vgd − Vt) Fe (Vds) .

This expression is the complete steady-state MOS transistor model in the Ana
library. In accordance with the modeling guidelines in Chapter 5, the linear capac-
itances Cgb, Cdb, Csb, Cgs, and Cgd also are included, where b is the reference node.
Key features of the model are graphed on the next four pages. These graphs are
simulation results from Ana.

Chapter 7
The Transconductance Amplifier

7.1 Introduction

Most analog VLSI circuits can be simulated in Ana by using the MOS transistor
model developed in Chapter 6, in conjunction with resistor and capacitor gates.
Simulation is more efficient in several ways, however, if atomic models are created
for commonly used circuits. In an atomic model, the description of each transistor
can be simplified to reflect its role in the circuit. The model may be accurate for
only certain regions of operation, with range checking to indicate improper usage.
Nodes that are not accessible to the user can be eliminated, and replaced by a
closed-form approximation of subcircuit behavior.

The technique of circuit modeling is well illustrated by the transconductance
amplifier gate in Ana. The circuit schematic and gate symbol are shown on the next
page. The circuit has one active current output, Iout, which is a function of the four
user-accessible potentials V1, V2, Vset, and Vout, and of the two internal potentials
V and Vm. All six transistors typically operate in the subthreshold range. The
output current is a differential amplification of the potentials V1 and V2, scaled by
a current controlled by Vset.

An atomic modeling strategy is easily applied to the transconductance amplifier.
The internal nodes corresponding to V and Vm are eliminated in the Ana gate model.
Gate behavior is accurate only for values of Vset that ensure subthreshold operation
of all transistors; the user is informed of incorrect usage by a warning indicator
that appears on the symbol. The output impedance of all six circuit transistors
are lumped into a single term, and many other simplifications are made. These
techniques are described in detail in this chapter.

7.2 Basic Amplification Function

The amplification output function Iout(V1, V2, Iset) can be easily derived, while
eliminating the nodes corresponding to the potentials V and Vm from the gate
description. As noted on the schematic diagram, Iout = I1 − I2 and Iset = I1 + I2.
Dividing Iout by Iset, and assuming Q2 and Q3 are in subthreshold, yields the
expression

Iout = Iset
I1 − I2

I1 + I2
= Iset

exp(V1 − V)− exp(V2 − V)
exp(V1 − V) + exp(V2 − V)

,

where all potentials are scaled by the inverse of Vo. A factor of exp(−V) can be
eliminated from the fraction, resulting in the expression

Iout = Iset
exp(V1)− exp(V2)
exp(V1) + exp(V2)

.

After algebraic manipulation, the simplified expression

Iout = Iset tanh
(

V1 − V2

2Vo

)
≡ Iamp

results, where all potentials are rescaled to correct units. As earlier stated, the
circuit functions as an amplifier of the difference V1− V2 over a domain of approxi-
mately 4Vo volts. The range of the function is scaled by Iset, which is controlled by
Vset. In the following sections, several important additional characteristics of the
circuit are modeled, leading to the formulation of the complete function Iout.

7.3 Computing the Scaling Current

In Section 7.2, the term Iset was not defined. If transistor Q1 always is fully on,
this definition is simply

Iset = Ic (Vset) ,

where Ic is taken from the MOS transistor model definition. However, the Vds of
Q1 may not always be above Vo, which is the necessary condition for the transistor
to be on. Recall that Iset = I1 + I2. The dominant term in this sum is the current
corresponding to the voltage max(V1, V2). The voltage V is therefore approximately
equal to max(V1, V2)−Vset. If max(V1, V2)−Vset < Vo, the current Ic(Vset) is linearly
derated, as a result of the linear characteristic of the hyperbolic tangent function.
The expression

Iset = Ic (min (Vset,max (V1, V2)))

is a good approximation of this behavior. The min and max functions are imple-
mented with Fermi functions, as shown in Chapter 5.

7.4 Computing the Output Impedance

The output transistors Q5 and Q3 both have a finite output impedance, which
should be reflected in the amplifier model. Using the output impedance definition
G of the MOS transistor and Fermi functions, the expression

Iamp

(
Fe(V1 − V2)G(Vout) + Fe(V1 − V2)G(Vdd − Vout)

)

supplies the necessary impedance.
When a transconductance amplifier is fabricated, the output current function is

not always an ideal hyperbolic tangent. One type of error introduced in manufac-
turing results in tanh(∞) $= − tanh(−∞). Two simulation parameters λp and λn

can be added to the previous expression to simulate this effect, resulting in the new
expression

Iamp

(
Fe(V1 − V2)G(Vout)λn + Fe(V1 − V2)G(Vdd − Vout)λp

)
≡ Itot.

Note that λp and λn both default to unity, for an ideal amplifier model.

7.5 Output Voltage Constraints

If Vout is too large or too small, the circuit does not function as an amplifier. If
Vout is larger than Vdd, the current through transistor Q5 changes direction, drawing
current from the output. Note that, if V1 > V2, Vg of Q5 is at a potential Vdd−Vset,
and significant reverse current flows into Q5 for Vout > Vdd. However, if V1 < V2,
Vg of Q5 is at a potential Vdd, and noticeable reverse current flows from Q5 only if
Vout > Vdd + Vset The addition of the term

Itop ≡ −
(
Fe(V1 − V2)Ic(Vout − Vdd) + Fe(V1 − V2)Ic(Vout + Vset − Vdd)

)

to Iamp models this effect.
If Vout is too small, the differential transistor pair Q2 and Q3 ceases to operate

correctly. If V2 > V1, V = V2− Vset during normal operation. If Vout ≤ V2− Vset, V
is forced to a lower potential to maintain the proper magnitude of current through
Q3. If Vout ≤ V1 − Vset, however, Q2 and thus Q5 conduct. A large output current
results, and the amplifier ceases to function as desired.

If V2 < V1, similar breakdown results. In this case, V = V1−Vset during normal
operation. If Vout ≤ V1−Vset, V remains at V = V1−Vset, and the current through
transistor Q3 changes direction. If Vout ≤ V2 − Vset, a significant reverse current
flows through Q3 to the output, and the circuit does not operate correctly. For both
V2 > V1 and V2 < V1, the effect of low Vout can be modeled by the addition of the
term

Ibot = Ic (min (V1, V2)− Vout)

to Iamp.

7.6 Completing the Model

Using the previous definitions, the circuit is modeled completely by the expres-
sion

Iout = Itot + Itop + Ibot.

The model is accurate only when Vset < Vt, ensuring subthreshold operation
of all transistors for normal Vout. To meet the transient modeling requirements,
parasitic capacitances are added between each pair of nodes, and between each node
and ground. Graphs of key model features are shown at the end of the chapter.
These graphs are simulation results from Ana.

When the circuit is fabricated, the hyperbolic tangent amplifier characteristic
is not always centered about V1 − V2 = 0. To allow simulation of this error, the
simulation parameter δv is defined. In all the model equations previously presented,

V1 → V1 + 1
2δv, and V2 → V2 − 1

2δv. The default value of δv is zero, providing an
ideal amplifier model.

7.7 The Wide-Range Transconductance Amplifier

In many system applications, the restrictive Ibot behavior of the transconduc-
tance amplifier cannot be tolerated. In these applications, a variant of the circuit,
called the wide-range transconductance amplifier, is used. The circuit schematic and
gate symbol are shown on the next page. Except for a less restrictive Ibot function,
the circuit behaves in the same way as the standard transconductance amplifier.

Referring to the schematic, the behavior of transistor Q8 for low Vout is symmet-
ric to the behavior of transistor Q9 for high Vout. Thus, the wide-range amplifier
function Ibot can be deduced from the function Itop to be

Ibot ≡ −
(
Fe(V1 − V2)Ic(−Vout) + Fe(V1 − V2)Ic(−Vout − Vset)

)
.

In all other respects, the standard and wide-range transconductance amplifiers are
identically modeled in Ana.

Chapter 8
Rectification Circuits

8.1 Introduction

The circuits described in Chapter 7 transform a differential voltage into a bidi-
rectional current, preserving the sign of the input signal. In applications such as
power estimation, demodulation, and absolute-value computation, a unidirectional
output signal is desired regardless of the input polarity. The half-wave rectifica-
tion operator achieves this result by ignoring input signals of one sign, whereas the
full-wave rectification operator produces a single polarity output by processing both
positive and negative inputs identically. MOS circuits that implement these func-
tions were designed by Massimo Sivilotti at Caltech, and are shown on the next
page.

The atomic models for both rectification circuits are described in this chapter.
Both circuits have one active output Iout, which is a function of the voltages V1,
V2, Vset, and Vout. The descriptions of Iout contain expressions originally defined
for the transconductance amplifier, illustrating the hierarchical nature of the Ana
modeling style.

8.2 Basic Rectification Function

The basic descriptions of both rectifiers are derived from the transconductance
amplifier function Iamp (V1, V2) = Iset tanh

(
V1−V2

2Vo

)
, shown in Chapter 7. For the

half-wave rectifier, note that Imir never can be a negative current. Thus, if V1 ≥ V2,
Vmir → Vdd to ensure Imir = 0. As a result, Iout = 0, and input signals of positive
polarity are rejected. When V2 ≥ V1, the current mirror formed by Q1 and Q2

operates normally, and Iout is the negation of the amplifier output current. In
this manner, only input signals of negative polarity are passed to the output. The
expression

Ih
amp (V1, V2) ≡ −Iamp (V1, V2)Fe(V1 − V2)

captures this behavior. From the schematic, the basic function of the full-wave
amplifier is Ih

amp (V1, V2) + Ih
amp (V2, V1), or, after simplification,

If
amp (V1, V2) ≡ Iamp (V1, V2)

(
Fe(V1 − V2)− Fe(V1 − V2)

)
.

As desired, this expression is essentially the absolute value of the transconductance
amplifier basic function.

The output impedance of both circuits is simply the impedance of the active
output transistor, which can be expressed by the MOS transistor function G. The
two previous equations can be rewritten to include this impedance. It is convenient

to include the transconductance amplifier fabrication parameters λn and λp in this
restatement, resulting in the new definitions

Ih
tot ≡ −λpG(Vdd − Vout)Ih

amp (V1, V2)

and

If
tot ≡ G(Vdd − Vout)Iamp (V1, V2)

(
λnFe(V1 − V2)− λpFe(V1 − V2)

)
.

8.3 Output Voltage Constraints

The current mirror formed by Q1 and Q2 prevents the transconductance ampli-
fier subfunctions Ibot and Itop from affecting rectification behavior, if Vset is set to
ensure subthreshold amplifier operation. Thus, in the half-wave rectifier, the only
component influenced by Vout is transistor Q2, the current of which can reverse
direction if Vout is sufficiently large. This transistor performs a similar function to
the output transistor Q5 in the transconductance amplifier. Following this previous
analysis, the expression

Ih
top ≡ −

(
Fe(V1 − V2)Ic(Vout + Vset − Vdd) + Fe(V1 − V2)Ic(Vout − Vdd)

)

is obtained. This term is added to Ih
tot to model the half-wave rectifier completely.

From the schematic, the expression If
top for the full-wave rectifier is simply

Ih
top (V1, V2) + Ih

top (V2, V1). For a functional model, this expression can be approxi-
mated as

If
top ≡ −Ic(Vout − Vdd + Vset).

This term is added to If
tot to model the full-wave rectifier completely.

8.4 Completing the Model

The steady-state models for the half-wave and full-wave rectifiers are complete.
These models are accurate for Vset ≤ Vt, ensuring subthreshold operation of all
transistors for normal Vout. As in the transconductance amplifier, the simulation
parameter δv is defined to model fabrication variations, and in all previous equations
V1 → V1 + 1

2δv and V2 → V2 − 1
2δv. Parasitic capacitances are added between each

pair of nodes, and between each node and the reference node, to meet transient
modeling requirements. Graphs of the simulation results from Ana are shown on
the next page.

Chapter 9
The Horizontal Resistor Circuit

9.1 Introduction

The polysilicon resistors available in a standard MOS fabrication process are not
suitable for widespread use in analog VLSI systems. High-value resistors consume
too much chip area, whereas low-value resistors dissipate an unacceptable amount of
power. The horizontal resistor circuit, shown on the next page, provides a nonlinear
variable resistance that can replace polysilicon resistors in many applications.

Referring to the schematic, the resistor terminals are the nodes associated with
potentials Vin and Vout. The potentials Vlow and Vhigh are complementary signals
that control the resistance value. In the Ana circuit model, the two active currents
Iin and Iout are defined as a function of all four potentials. Vlow and Vhigh are
normally set to ensure that all transistors operate in the subthreshold region.

9.2 Basic Resistance Function

For the circuit to operate as intended, the control voltages Vlow and Vhigh must
be set such that Ihigh = Ilow ≡ Iset. Given this condition, by conservation of current,
Iin = Iout ≡ I. Transistors Q3 and Q6 carry an equal current I1, and transistors
Q4 and Q5 carry an equal current I2, as a result of circuit symmetry. By Kirchoff’s
current law, I = I2 − I1, and Iset = I2 + I1. Dividing I by Iset, and assuming all
transistors operate in the subthreshold region, yields the expression

I = Iset
I2 − I1

I2 + I1
= Iset

exp(Vin − Vl)− exp(Vout − Vl)
exp(Vin − Vl) + exp(Vout − Vl)

,

where all potentials are scaled by the inverse of Vo. By eliminating a factor of
exp(−Vl) from the fraction, the previous equation can be rewritten as

I = Iset
exp(Vin)− exp(Vout)
exp(Vin) + exp(Vout)

.

After algebraic manipulation, the simplified expression

I = Iset tanh
(

Vin − Vout

2Vo

)

is obtained, where all potentials are rescaled to correct units. Notice that the circuit
functions as a linear resistance over a range of approximately 4Vo volts. The slope
of the linear region, and thus the resistance value, is determined by Iset, which
is controlled by the complementary potentials Vlow and Vhigh. In the following
sections,

this expression is expanded to model circuit behavior if Ihigh != Ilow, and if Vin and
Vout are both too low or too high for correct operation of Q1 or Q2.

9.3 Definition of Control Currents

In this section, complete expressions for the control currents Ilow and Ihigh
are derived. First consider Ilow. If transistor Q2 is on and is operating in the
subthreshold region, Ilow = Ic(Vlow). The potentials Vin and Vout, however, also can
affect this current. Note that Ilow is primarily carried by the N-channel transistor
(Q4 or Q6) with the highest gate voltage. Thus, the potential Vl has the value
max(Vin, Vout)−Vlow. If this potential is less than Vo, the current through transistor
Q2 is derated. The expression

Ic(Vlow)Fe

(
Vlow −max(Vin, Vout)

)

approximates this behavior.
The analysis of Ihigh is similar. If transistor Q1 is on and is operating in the

subthreshold region, Ilow = Ic(Vdd − Vhigh). This current also can be affected by
the potentials Vin and Vout. Note that Ihigh is primarily carried by the P-channel
transistor (Q3 or Q5) with the lowest gate voltage. Thus, the potential Vh has the
value min(Vin, Vout)− (Vdd − Vhigh). If this potential exceeds Vdd − Vo, the current
through transistor Q1 is derated. The expression

Ic(Vdd − Vhigh)Fe

(
min(Vin, Vout)− (Vdd − Vhigh)

)

approximates this behavior.
As in the transconductance amplifier, when the horizontal resistor circuit is

fabricated, the nonlinear resistance function can display the error tanh(∞) !=
− tanh(−∞). The parameters λp and λn can be added to the previous equations to
model this behavior, resulting in the final expressions

Ilow ≡ λnIc(Vlow)Fe

(
Vlow −max(Vin, Vout)

)

and
Ihigh ≡ λpIc(Vdd − Vhigh)Fe

(
min(Vin, Vout)− (Vdd − Vhigh)

)
.

If Vlow > Vt or Vdd − Vhigh > Vt, the circuit is not in the subthreshold region
of operation, and the model is not longer accurate. If either condition occurs, a
warning indicator appears on the schematic symbol.

9.4 Completing the Model

The results of Sections 9.2 and 9.3 can be combined with Fermi functions to
describe the currents Iin and Iout. If Ires ≡ tanh

(
Vin−Vout

2Vo

)
, the definitions

Iin ≡
(
Fe(Vin − Vout)Ilow + Fe(Vin − Vout)Ihigh

)
Ires

and
Iout ≡

(
Fe(Vin − Vout)Ihigh + Fe(Vin − Vout)Ilow

)
Ires

are exact for Ihigh = Ilow. If Ihigh != Ilow, the expressions are a suitable approxima-
tion for a functional model.

To complete the steady-state model, the appropriate output impedance is added
to each expression using the MOS transistor function G, producing the final defini-
tions

Iin ≡
(
Fe(Vin − Vout)G(Vin)Ilow + Fe(Vin − Vout)G(Vdd − Vin)Ihigh

)
Ires

and

Iout ≡
(
Fe(Vin − Vout)G(Vdd − Vout)Ihigh + Fe(Vin − Vout)G(Vout)Ilow

)
Ires.

As in previous circuit models, the simulation parameter δv is defined to model
fabrication variations, and distributed between the potentials Vin and Vout. Parasitic
capacitances are added between each pair of nodes, and between each node and the
reference node, to meet transient model requirements. Simulation results from Ana
are shown on the next page.

Chapter 10
The Ganglion Circuit

10.1 Introduction

In biological systems, information often is encoded as the average value of a pulse
train of standard height. The ganglion circuit, shown on the next page, imitates this
neuronal behavior, generating a pulse stream Vout(t) that has an average potential
proportional to the input current Iin. The pulses switch between Vdd and the
reference node, with a time constant set by the control voltage Vleak. The Ana
model defines the active currents Iin and Iout as functions of the potentials Vin, Vout

and Vleak.

10.2 Principles of Circuit Operation

Referring to the schematic, the transistors Q3, Q4, Q5, and Q6 function as a
pair of inverters. These transistors can be functionally modeled as a noninverting
buffer between Vin and Vout, which sets Vout = Vdd if Vin is greater than the buffer
threshold Vth, and sets Vout equal to the reference voltage if Vin < Vth.

It is convenient to analyze qualitative circuit behavior from the initial condition
Vin = Vth − ∆V1. This condition implies Vout is at the reference voltage, and
transistor Q2 is off. The capacitor C1 charges at a rate determined by Iin until
Vin = Vth. At this instant the buffer switches, forcing the new conditions Vout = Vdd
and Vin = Vth + ∆V2. As a result, transistor Q2 is on, and C1 discharges at a rate
determined by the current Ileak − Iin, until Vin = Vth. At this point, the buffer
again switches, returning Vout to the reference voltage and setting Vin = Vth−∆V1.

The quantities ∆V1 and ∆V2 can be determined easily, using conservation of
charge in the system during buffer switching. The instant before the buffer switches
to Vout = Vdd, capacitors C1 and C2 are connected in parallel between Vin and the
reference node, and the total charge in the system is Q− = (C1 + C2)Vth. After the
buffer switches, C1 and C2 form a capacitive divider between Vdd and the reference
node, and the total charge in the system is Q+ = C1(Vth+∆V2)−C2(Vdd−Vth−∆V2).
Equating Q+ and Q− yields, after algebraic manipulation, the expression

∆V2 =
(

C2

C1 + C2

)
Vdd.

The same technique can be used to determine ∆V1. The instant before the buffer
output switches from Vdd to the reference voltage, the capacitive voltage divider
topology is in place, and the total charge in the system is Q+ = C1Vth−C2(Vdd−Vth).

After the buffer switches, C1 and C2 form the parallel topology, and Q− = (C1 +
C2)(Vth −∆V1). Equating total charge and solving for ∆V1 shows that

∆V1 =
(

C2

C1 + C2

)
Vdd = ∆V2,

as symmetry would suggest.
The pulse duration period, τd, when Vout = Vdd, and the pulse refractory period,

τr, when Vout equals the reference voltage, can both be determined easily. Applying
the capacitor definition for C1 when Vout is high gives the expression

Icap = C1
dVin

dt
= C1

−∆V2

τd
= Iin − Ileak.

Solving for the pulse duration yields

τd =
(

C1C2

C1 + C2

) (
Vdd

Ileak − Iin

)

.

This technique also can be applied when Vout is low. The capacitor definition for
C1 is

Icap = C1
dVin

dt
= C1

∆V1

τr
= Iin.

Algebraic manipulation yields the final expression

τr =
(

C1C2

C1 + C2

) (
Vdd

Iin

)
.

As expected, as Iin → 0, τr → ∞, and the average value of Vout is the reference
voltage. Also, as Iin →∞, τd → 0 and τr → 0, and the average value of Vout is Vdd.

10.3 The Ana Model

The Ana ganglion model is not an abstraction of the switching dynamics of
the circuit. Rather, the state capacitors C1 and C2 remain in the model. Efficient
descriptions are substituted for the noninverting buffer Q3 . . . Q6 and the leakage
circuit Q1 and Q2.

The noninverting buffer can be modeled as a nonlinear, voltage-controlled volt-
age source with an output resistance Rs. This source can be described using a Fermi
function, as

Isw =
1
Rs

(
VddFe (Vth − Vin)− Vout

)
.

Iout is the sum of Isw and the current contributed by C2.

If Vin < Vth, the current Ileak is set by Q1 to be Ic(Vleak). If Vin > Vth, however,
the noninverting buffer output is high, Q2 is off, and Ileak = 0. The expression

Ileak = G(Vin)Ic(Vleak)Fe (Vth − Vin)

approximates this behavior, including the transistor output impedance. The current
Iin is the sum of Ileak and the current contributed by C1 and C2.

With the addition of a parasitic capacitor between each pair of nodes, and
between each node and the reference node, the ganglion model is complete. The
model is correct only if Q1 and Q2 are operating in the subthreshold region; if Vleak >
Vt, a warning indicator appears on the gate symbol. Graphs of Ana simulation
results appear on the following pages.

Chapter 11
Topics for Further Research

The evolution of Ana from the prototype described in this thesis to a production
tool is in many ways a straightforward process. Algorithm refinement and code
optimization can improve program efficiency, and the user interface can be enhanced
by fully integrating Ana into the LOG environment. An expansion of the gate
library, however, presents several difficulties.

Creating the complete software definition of an Ana gate is a large task; the
horizontal resistor gate, for example, is defined by approximately 1200 lines of Pascal
source code, which required 50 hours of programmer time to generate. Recall that
for a gate Gk with p pins, the Newton–Raphson method requires, for each pin l,
the evaluation of the set of partial derivatives

∂P k
l

∂v1
, . . . ,

∂P k
l

∂vp

in addition to the behavioral function P k
l . The generation and efficient coding of

these symbolic derivatives are tedious and time-consuming manual tasks.

A LOG tool that transforms a set of functional descriptions P k
1 . . . P k

p into an
efficient software definition is clearly needed. Standard techniques in compiler de-
sign and symbolic mathematical manipulation are applicable to the design of a
simulation assembler. This tool simplifies the conversion of a functional description
into a software definition; the generation of the functions P 1

k . . . P p
k from a circuit

schematic remains a manual operation.

A simulation compiler is a tool that generates a closed-form behavioral model of
an analog circuit. Using this tool, a hierarchical model of a large analog system can
be created easily. Circuit theory provides a compilation algorithm that generates
exact descriptions of linear circuits. Unfortunately, there is no known method for
generating an exact, closed-form description of an arbitrary nonlinear circuit.

Circuits designed in the analog VLSI style developed at Caltech, however, have
several interesting semantic properties. Usually, the MOS transistor and the MOS
capacitor are the only circuit primitives. Typically, transistors are used either in
the subthreshold region or as components in simple logic gates. The MOS capacitor
can be considered as a linear element without changing its qualitative behavior in
most circuits.

In addition, an exact, completely closed-form description of a nonlinear circuit
is not necessary in this application. Approximate descriptions, similar to the circuit
models presented in this thesis, are sufficient for functional simulation. Eliminating
most of the intermediate variables in a circuit model is an acceptable alternative to
generating a closed-form expression.

Under these weakened source and object constraints, simulation compilation
is a tractable research topic. This research may be related to fields as diverse as
linear and nonlinear systems theory, deterministic and stochastic estimation the-
ory, electronic circuit design, symbolic mathematical manipulation algorithms, and
production-rule programming.

Bibliography

[1]Gupta, Gobal K., Ron Sacks-Davis, and Peter E. Tischer, A Review of Recent
Developments in Solving ODEs, ACM Computing Surveys, Vol 17, No 1, pp. 4–47.

[2]Scarborough, James B., Numerical Mathematical Analysis, Baltimore, Maryland:
John Hopkins University Press, 1958, pp. 192–211, 525–527.

[3]Action, Forman S., Numerical Methods That Work, New York, New York: Harper
& Row, 1970, pp. 54–55.

[4]Mead, Carver A. and Mary Ann C. Maher, “A Charge-Controlled Model for
Submicron MOS,” Proceedings of the Colorado Microelectronics Conference, 1986.

1

