
COMPILING MPEG 4 STRUCTURED AUDIO INTO C

John Lazzaro and John Wawrzynek

CS Division
UC Berkeley

Berkeley, CA, 94720
{lazzaro, johnw}@ cs.berkeley.edu

ABSTRACT

Structured Audio (SA) is an MPEG 4 Audio standard
for algorithmic sound encoding, using the programming lan-
guage SAOL. The paper describes a SA decoder, sfront, that
translates a SAOL program into a C program, which is then
compiled and executed to create audio. Performance data
shows a 7.6x to 20.4x speedup compared to the SA refer-
ence MPEG decoder.

1. INTRODUCTION

MPEG 4 Structured Audio (SA) [1] [2] is a normative stan-
dard for the algorithmic coding of sound. The standard de-
fines an audio signal processing language, SAOL, whose
programs may be controlled by the musical control languag-
es SASL and MIDI. SA encoders create programs using
these languages; SA decoders execute these programs to
create sound.

The classic design trade-offs for programming language
execution apply to SAOL. At one extreme, SAOL programs
may be directly interpreted. Direct interpreters are simple
programs to write, and have the run-time advantage of low
startup latency; the downside of direct interpretation is slow
execution performance. The MPEG reference implementa-
tion for SA is a SAOL interpreter.

An alternative to interpretation is the direct compila-
tion of SAOL into the machine code of the target machine.
Compilers offer better execution performance, relative to in-
terpreters, because the CPU executes the program directly.
Interpreters, in contrast, involve a level of indirection: the
CPU executes a program (the interpreter) that in turns ex-
ecutes a second program (the SAOL program). However,
compilers incur higher startup latency, and are more com-
plex than interpreters to develop and optimize.

Between these two extremes in the design space lie sev-
eral hybrid approaches to SAOL execution. One approach,
described in [3], uses the virtual machine concept: SAOL is
translated into the instructions of a virtual processor, whose
instruction set is a good target language for SAOL. This

virtual-machine code is then interpreted, a task more amen-
able to efficient implementation than interpreting SAOL.

A second hybrid approach, which we describe in this
paper, is the translation of SAOL into a C language program,
which is compiled into native machine code and executed
directly on the target machine.

Since the translated C program is executed directly on
the underlying machine, the SAOL-to-C approach main-
tains the core performance advantage of pure compilation.
However, by using C as an intermediate format, the SAOL-
to-C approach offloads the complex task of machine code
generation to the system C compiler. C is a good language
for expressing the constructs that a native SAOL compiler
would generate, excepting SIMD resource management.

We have written the experimental SA decoder sfront,
which is based on SAOL-to-C translation. We begin this
paper with an introduction to sfront, including benchmarks
comparing sfront and the MPEG reference decoder on a
small suite of test programs, showing speedups of 7.6x to
20.4x. The remainder of the paper describes the methods
sfront uses to translate SAOL into efficient C code.

The paper assumes a working knowledge of the SAOL
language; readers unfamiliar with SAOL should consult [1]
and [2].

2. SFRONT

Sfront is a program that translates a Structured Audio pro-
gram into a C language program. To generate sound, the
C program sfront generates is compiled into native machine
code and executed.

Sfront is written in pure ANSI C, and creates pure ANSI
C files that use standard file formats for audio I/O. If an
ANSI C compiler exists for a platform (including the freely-
available GNU C compiler), sfront will run on the platform
as a file renderer. In addition, sfront has an audio and control
driver structure, so that library code may be included into
the C file sfront creates for platform-specific applications.

Under the Linux platform, sfront has audio and con-
trol drivers to support audio microphone input, audio out-



saolc

sfront

vowel beat claps pc

speedup

[10 s] [60 s] [25 s] [67.3 s]

40.1 s

2.8 s

14.3x

159.4 s 31.2 s 902.4 s

44.2 s4.1 s8.6 s

18.5x 7.6x 20.4x

Figure 1: Sfront performance comparison vs. MPEG
reference implementation saolc, for rendering (to a
file) four SAOL programs shipped with sfront. Brack-
eted times below program names are size, in seconds,
of program output. All times are user times, for a
450 MHz PIII, 128 MB RAM, Linux 2.2.17; sfront
times are for sfront, gcc, and C program execution.
The pure ANSI C programs sfront produces do not do
assembly-language SIMD access, and the gcc version
(egcs-2.91.66) does not do extensive SIMD vectoriza-
tion.

put, and MIDI control input. These drivers let sfront create
real-time interactive software synthesizers and low-latency
audio signal processors.

Sfront has been available for download via the Internet
since March 1999 [4]. Over 12,000 downloads of sfront
have occurred since its release, and an online book and ref-
erence manual for SAOL programmers has received over
140,000 page views.

Figure 1 compares the performance of sfront and the
MPEG reference compiler saolc, for file rendering of four
SAOL programs (written by E. Scheirer) that are shipped
with the sfront distribution. Sfront runs these examples 7.6
to 20.4 times faster than saolc. See Figure 1 caption for
benchmarking details.

In each example in Figure 1, the sfront running time is
significantly less than the length of the audio file, measured
in seconds of audio produced. This suggests that real-time
streaming from the C program sfront produces would work.
In practice, when sfront is configured for real-time stream-
ing, the vowels, beats, and claps examples stream without
glitches. The pc example has concentrated CPU bursts due
to note flurries, and real-time streaming audio glitches dur-
ing these moments. We plan to implement (non-normative)
note dropping to handle these issues.

Sfront uses three properties of the SA standard to gen-
erate efficient C code: SAOL’s static memory model, the
opportunity to implement SA libraries using generator tech-
niques, and the preponderance of implicit loops in SAOL
programs. In the next three sections, we describe each meth-
od in detail.

3. MEMORY MODELS

A C fragment that accesses a variable directly usually exe-
cutes faster than a C fragment that accesses a variable via
one or more levels of indirection. Indirection is slow for
several reasons: the added work for the CPU to do the indi-
rection, the effect of indirection of caches, and the difficulty
of removing indirection during C compilation.

Sfront capitalizes on properties of the SAOL language
to generate C code with as few indirect memory references
as possible, with the goal of speeding up program execution.
In this section, we describe these SAOL properties in detail.

The memory usage of a SAOL instrument and its op-
calls is essentially static. The language does not support
recursion, automatic variables, or dynamic memory alloca-
tion of variables; all array sizes are known at compile time.
While the language supports run-time sizing of wavetables,
analysis of a collection of SAOL programs shows that this
feature is rarely used: the size of most tables is known at
compile time.

Sfront uses these facts to reduce memory indirection.
Instead of using the standard dynamic-stack-and-heap ap-
proach to memory management for a SAOL instrument and
its opcalls, it declares fixed-size C global arrays to hold the
signal and table variable state for a SAOL instrument and
its opcalls.

Sfront translates the SAOL code that accesses signal
variables and tables into C statements that access these C
global arrays using constant array indices. For opcalls, this
technique requires generating unique C code for each op-
code call; for example, three calls to the SAOL core opcode
buzz in an instrument will result in three C functions, each
pointing to different areas of global memory. This basic idea
(global arrays accessed with constant indexing) is also used
to represent and access all SAOL state in the global block
(global signal variables, tables and audio buses).

These techniques eliminate most memory indirections
in effects instruments, since C code can be generated which
accesses one variable frame for the entire program. For non-
effects instruments, local SAOL variable access requires a
single indirection, whereas global SAOL variable access oc-
curs without indirection.

Sfront reduces memory indirection during C code gen-
eration in other ways. Oparray calls with static indices are
converted into opcode calls, to eliminate an indirection.
Sfront eliminates the indirection inherent in passing tables
and call-by-reference variables into SAOL opcodes, by back-
tracking up the SAOL calling stack during C code gener-
ation. Sfront promotes local tables to global tables if the
size and state of the tables are fixed, eliminating a mem-
ory indirection. Finally, sfront eliminates the overhead of
copy-in/copy-out semantics of SAOL global signal variable
importation, substituting direct access if safety permits.



Note that most of the methods described above have
safety caveats: in some rare situations, eliminating a level
of memory indirection results in incorrect SAOL semantics.
Sfront analyzes SAOL code before generating C code, to
catch these illegal edge cases.

4. GENERATOR TECHNIQUES

About 30 percent of the SA standard describes the SAOL li-
brary, which includes 104 core opcodes, 16 wave table gen-
erators, 25 standard names, and 3 I/O related SAOL state-
ments. Sfront generates custom C code for each invocation
of a library element in a SAOL program. Sfront optimizes
the code produced for each use of a library element, based
on the attributes of the invocation. These attributes include
the rate, width, size, constancy, and integral nature of the
parameters, as well as the number of parameters.

Before C code generation begins, sfront analyzes the
SAOL program, to determine these attributes for each li-
brary element call. Sfront also performs an extensive set
of constant-folding optimizations before code generation,
across SAOL statement, rate, and opcode boundaries. Sfront
uses these attributes to craft optimal C code for SAOL li-
brary elements, using methods described below.

4.1. Wavetable Initialization

An analysis of a collection of SAOL programs shows that
most wavetable generators have constant parameters, and
thus can be evaluated at compile-time. Sfront detects this
common case, and computes the table values at compile-
time for moderate-sized arrays (8912 elements or less). Con-
stant C arrays are generated to hold this data.

For all other tables, custom C functions are generated
to create the table at run time, whose code is simplified to
reflect constant parameter values. For the sample genera-
tor, which reads in data from a WAV or AIFF file. sfront
constructs a custom parser matched to the file.

4.2. Library Inlining

For simple library elements, sfront does not create a C func-
tion; instead, the opcall is replaced with an inline snippet of
C code. 40% of the core opcodes, 66% of the SAOL I/O
statements, and 100% of the standard names are inlined at
least some of the time.

The decision to inline, and the nature of the inline code,
is often influenced by the library element attributes. For
many math and pitch opcodes, constant parameters result in
the compile-time evaluation of the opcode, resulting in an
inlined constant. For table opcodes, a tablemap argument
might disallow inlining, while an integral or constant table
index value might significantly simplify the C code by elim-
inating interpolation. I/O related library elements such as

the input standard name are extensively customized, based
on the audio signal path.

4.3. Opcode Customization

Sfront uses attributes to fine-tune the C code created for core
opcodes. Many core opcodes use a phasor to play out tables
values (e.g., oscil) or for driving waveform calculation (e.g.,
aphasor). Sfront customizes the code for phasors, based on
the rate and constancy of the cps parameter.

Many core opcodes involve audio-rate filtering, under
the control of coefficients (e.g. biquad) or parametric vari-
ables (e.g., lopass). Sfront generates C code for these filters
that significantly improves the performance for i-rate and
constant control. For parametric control, this customization
is done by generating different C output depending on pa-
rameter attributes. For coefficient-based filters, sfront uses
a code style that C compilers can easily optimize if coeffi-
cients are constant.

The envelope core opcodes (e.g. aline) have an arbitrary
number of opcall parameters; each segment of the envelope
requires several parameters. Sfront creates C code that is
customized to the number of segments: each segment adds
a label to a C switch statement that coordinates envelope
playback.

Sfront also uses attributes to guide C code generation for
the most complex opcodes in the SAOL library: the Fourier
opcodes fft and ifft. If the transform size is known at com-
pile time, sfront customizes the Wij tables and scaling con-
stants; C code for overlap-add and custom windows is in-
serted only if these options are selected.

5. IMPLICIT LOOPS

SAOL has one explicit looping construct, the while state-
ment. An analysis of a collection of SAOL programs shows
that explicit loops are rarely used in SAOL code. Instead
of writing looping code directly, SAOL programmers use
several language features to implicitly specify loops: array
arithmetic expressions, wavetables library elements, and au-
tomatic statement scheduling based on rate semantics.

Sfront creates explicit C loops for these implicit SAOL
loops that are efficient by construction. In Section 4, we de-
scribe how sfront implements wavetable libraries. We dis-
cuss other implicit loop forms below.

5.1. Array Arithmetic

SAOL fully supports array arithmetic, including vector-vect-
or and vector-scalar logical, arithmetic, and conditional ex-
pressions, and vector assignment. SAOL programmers can
use array arithmetic to write multi-channel audio processing
without explicit loops. Update rules for complex structures



such as oscillator and filter banks may be written as a single
statement.

Sfront currently translates SAOL array arithmetic into C
code by fully unrolling the implicit array loops; the C global
arrays that hold the signal variable state are accessed with
a minimum of indirection. The result is a large block of
straight-line C code that is easy for C compilers to schedule
onto functional units.

5.2. Rate Scheduling

Every SAOL program executes a pair of implied nested
loops: an outer loop, which executes i-rate and k-rate state-
ments, and an inner loop, which executes a-rate statements.
A SAOL decoder determines the rate of each statement in
an instrument code block, and schedules the statement for
execution at the appropriate rate in these nested loops.

Rate scheduling can result in inefficient code, if a state-
ment scheduled to run at a-rate contains k-rate or i-rate sub-
expressions. This construction results in redundant expres-
sion evaluation. Sfront eliminates this inefficiency before
C code generation begins. Statements in SAOL instruments
are analyzed line by line, and slower-rate subexpressions are
moved to assignment statements that run at the slower rate.

SAOL decoders are free to structure the a-rate compu-
tation in the inner nested loop to maximize instruction level
parallelism, as long as normative semantics are not altered.
Some decoders [3] use blocked execution techniques to ex-
ploit this freedom, rearranging the inner loop to compute
many a-cycles of a single statement in a block, to better uti-
lize functional units.

In contrast, sfront currently takes a simpler approach,
and generates separate functions for the i-rate, k-rate, and
single-sample a-rate code in an instrument. These functions
are called by higher-level customized scheduling functions
that sequence instrument execution for the complete SAOL
program.

When we examine the C code sfront produces for a
SAOL a-rate statement block in a non-trivial instrument,
we generally find a dense mass of straight-line FPU-intense
arithmetic computation. Modern C compilers tend to find
and use instruction-level parallelism in this sort of code well.
However, we hope to experiment with blocked execution
techniques in future sfront work, to measure the FPU re-
source utilization and the memory cache behavior of this
approach to inner-loop organization.

6. CONCLUSIONS

In this paper, we described the main techniques sfront uses
to create efficient C code: reducing memory indirection,
customizing SAOL library elements, and creating efficient
C loops for implicit SAOL loops. In future work, we hope

to retarget sfront to generate native code for popular instruc-
tion sets.

7. ACKNOWLEDGEMENTS

We thank Eric Scheirer for his extensive guidance during
the development of sfront, and we thank the members of
the SAOL email lists for numerous discussions. This work
supported by Defense Advanced Research Project Agency
contract number DABT63-C-0048.

8. REFERENCES

[1] Scheirer, E. D., and Vercoe, B. L. (1999). “SAOL: The
MPEG-4 Structured Audio Orchestra Language.” Com-
puter Music Journal 23:2, pp 31-51.

[2] International Standards Organization (1999). Interna-
tional Standard ISO 14496 (MPEG-4), Part 3 (Audio),
Subpart 5 (Structured Audio). Geneva, CH: ISO.

[3] Le Bourhis, L., Zoia, G., Mattavelli, M., Mlynek, D.
J. (1999). “An Efficient Host/Co-Processor Solution for
MPEG-4 Audio Composition.” International Confer-
ence on Consumer Electronics, pp. 26-27, Los Angeles,
California, June.

[4] Lazzaro, J. and Wawrzynek, J. (1999).
www.cs.berkeley.edu/∼lazzaro/sa/


