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ABSTRACT
The Real-Time Protocol (RTP) is an extensible transport for sending media streams over Internet Protocol
packet networks. We describe a new payload format that extends RTP to transport MIDI (the Musical
Instrument Digital Interface command language). The payload format encodes all commands that may
legally appear on a MIDI 1.0 DIN cable. The format is suitable for interactive applications (such as the
remote operation of musical instruments) and content-delivery applications (such as file streaming). The
format defines tools for graceful recovery from packet loss, to support use over lossy unicast and multicast
networks (including wireless networks). Stream behavior, including the MIDI rendering method, may be
specified during session setup. Rendering methods are specified using the extensible Multipurpose Internet
Mail Extensions (MIME) registry.

1. INTRODUCTION
The Real-Time Protocol (RTP, [1]) is widely used
to transport media streams over Internet Protocol
packet networks. RTP is suitable for both low-
latency interactive applications (such as Internet
telephony) and content-delivery applications (such
as Internet radio). RTP itself does not provide ser-
vice quality guarantees, but applications may use
lower-level protocols to configure the quality of the
network that RTP uses.
RTP is an extensible transport. Support for a new
audio or video codec may be added to RTP by creat-
ing a new payload format. The Audio/Video Trans-
port (AVT) working group of the Internet Engineer-

ing Task Force (IETF) coordinates payload format
development.

At the 52nd IETF meeting (December 2001), we
presented a proposal for an RTP payload format
for MIDI (Musical Instrument Digital Interface, [2]).
MIDI is a standard for coding the physical gestures
that underly musical performance (playing piano
keys, striking drum pads, pushing faders, etc). Our
proposal was based on the network protocols used in
the network musical performance system described
in [3].

Shortly after the 52nd IETF meeting, RTP MIDI
was accepted as an AVT standards-track working
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group item. Many industrial and academic experts
have participated in the working group process, with
the goal of defining a format suitable for use in a
wide range of present and future MIDI applications.
The MIDI Manufacturers Association has partici-
pated in this effort, as have members the Motion
Pictures Expert Group (MPEG), whose synthetic
audio codecs use MIDI.

As of this writing, the RTP MIDI documents [4]
[5] have reached stability, and an example protocol
implementation (based on [6]) exists. The working
group is preparing a “Last Call” request for objec-
tions to the documents from the IETF community.
If the Last Call proceeds without objections, the
documents would be handed off to other IETF com-
mittees for further vetting. If these committees ap-
prove, the MIDI payload format would become an
IETF Proposed Standard.

In this 117th AES conference paper, we present an
overview of the RTP MIDI payload format. RTP
MIDI is a significant project to the AES commu-
nity, because if MIDI performances can be sent as
RTP streams, new types of network applications
may emerge:

• Manufacturers of music and audio equipment
may adopt RTP as the transport layer for local
media networks. In a local media network, In-
ternet Protocol (Layer 3) RTP streams for au-
dio, video, and MIDI are mapped to a wired
or wireless local area network (Layer 2). The
Layer-2 network is chosen to match the appli-
cation requirements (Ethernet, FireWire, and
Wi-Fi are examples of Layer-2 networks). Local
area networks have been used for performance
control for over a decade, both in academia [7]
[8] [9] and industry (for example, [10]).

• Conferencing applications may add support for
network musical performance. In a network per-
formance, musicians located in different physi-
cal locations interact over a network to perform
as they would if located in the same room. In-
terest in network performances dates back to
the early days of Internet media protocols [11]
[12] [13], and the topic has recently seen re-
newed activity [14] [15] [16] [3].

• The Internet content-streaming community
may begin to use MIDI for low-bitrate music
coding, perhaps in conjunction with normative
sound synthesis methods [17].

Technical highlights of the RTP MIDI payload for-
mat are listed below:

• The payload format uses a novel resiliency
scheme to support MIDI transport over net-
works that occasionally lose packets. The re-
siliency scheme is feed-forward in nature, and
does not use packet retransmission.

• The payload format defines flexible tools for en-
coding MIDI command timing. The tools sup-
port the accurate RTP transcoding of MIDI 1.0
DIN cables and Standard MIDI Files [2].

• Multiple synchronized RTP MIDI streams may
be sent in a media session. The session may also
include synchronized video and audio streams.

• Sessions may specify how a receiver renders a
MIDI stream into audio. Alternatively, sessions
may specify how an operating system presents
a MIDI stream to application programs. These
features are extensible to new renderers and op-
erating systems, via the Multipurpose Internet
Mail Extensions (MIME) registry [18] of the In-
ternet Assigned Numbers Authority (IANA).

The organization of this conference paper proceeds
as follows. We begin with an introduction to the
RTP protocol (Section 2). Section 3 describes the
design challenges of the RTP MIDI payload format
design. Sections 4-6 describe, at a high level, the
bitfield structure of the RTP MIDI payload format.
Sections 7-8 describe example algorithms for sending
and receiving RTP MIDI streams.

A key part of an RTP payload design is support
for the popular IETF session management protocols:
the Session Initiation Protocol (SIP, [19]) for inter-
active applications such as telephony, and the Real
Time Streaming Protocol (RTSP, [20]) for content-
streaming applications. In Section 9, we introduce
SIP as an example of a session management protocol.
In Section 10, we introduce the Session Description
Protocol (SDP, [21]) and outline the session descrip-
tion features of RTP MIDI.
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|V=2|P|X| CC |M| PT | Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SSRC |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Payload ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Fig. 1: RTP packet format (space delineates the header and payload)

Note that the purpose of this AES conference paper
is to provide an overview of RTP MIDI. Although
we consider the RTP MIDI design to be stable, and
the details in this paper reflect this stable design, the
protocol is still an IETF work in progress, whose de-
tails may change at any time. Implementors should
use [4] as a reference for preliminary software devel-
opment, not the details contained in this paper.

2. THE REAL TIME PROTOCOL

This section provides a brief introduction to the Real
Time Protocol (RTP, [1], [22]). We recommend [24]
for a comprehensive introduction to RTP.

An RTP media stream is a sequence of logical pack-
ets that share a common format. Each packet con-
sists of two parts: the RTP header and a payload.
Figure 1 shows the structure of an RTP packet.

We describe RTP packets as “logical” packets to
highlight the fact that RTP itself is not a network-
layer protocol. Instead, RTP packets are mapped
onto network protocols by an application.

RTP was designed to be used with network protocols
whose abstraction exposes the underlying nature of
the network, such as the User Datagram Protocol
(UDP, [23]). UDP lets a host send a single packet to
another host (unicast UDP) or to multiple hosts that
are listening to the same address (multicast UDP).

UDP packet delivery is best-effort. The network
strives to deliver packets in-order at the underlying

latency of the network. However, packets may be
lost in route to some or all receivers, packets may
arrive out of order, and packets may be subject to
variable delays.

When RTP is mapped to UDP, a single RTP packet
is mapped to a single UDP packet. Thus, an ap-
plication that uses RTP is directly exposed to the
best-effort nature of the network: a lost UDP packet
results in a lost RTP packet, a delayed UDP packet
results in a delayed RTP packet.

This exposure may seem to be an RTP shortcoming.
In fact, it is the prime feature of RTP. By presenting
an unfiltered view of network behavior, RTP lets a
media application handle lost and late packets in a
graceful way [25].

For example, if a video RTP packet codes a small
patch of the image, and this packet is lost, the ap-
plication may be able to use nearby image data (in
time and space) to “fill in the hole in the image” in
an unobjectionable way.

Whereas, if the application used a transport that
provided reliable in-order delivery, a packet loss
might result in a long delay in data delivery, due to
the time it takes to retransmit the lost packet. The
long delay might force the application to interrupt
video playback. Note that this rationale for RTP
also applies to lossless strategies for image repair,
such as the use of forward error correction (FEC)
codes in the RTP payload [26].
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With this background, we can see why RTP is aptly
named, even though it is not a protocol that offers
real-time service quality guarantees: RTP offers a
set of tools real-time applications may use to cope
with the best-effort nature of the underlying net-
work.

The RTP header fields encode several of these real-
time tools (Figure 1). For example, the header has
a 16-bit sequence number. The sequence number
is incremented by one (modulo 216) for each packet
sent in the stream. By noting breaks in the sequence
number series, receivers may detect lost packets.

The header also has a 32-bit timestamp value. The
timestamp value indicates the earliest moment in
time that is coded by the packet. Timestamps are
interpreted modulo 232, and have units of Hz. A
timestamp scaling factor (the clock rate) is defined
during session setup. For example, if the clock rate
is 44,100 Hz, timestamps that differ by 2 seconds
have values that differ by 88,200.

RTP has separate time and sequence numbers to
maximize payload format design flexibility. For ex-
ample, in telephony, packet transmission may be
stopped if a user stops talking. The packet that
ends the silent period would have a discontinuous
timestamp jump, but the unbroken sequence num-
ber series would indicate that no packets were lost.

The header defines a marker bit (M), that payload
formats may use to indicate special packet handling.
For example, telephony voice payloads use the M bit
to indicate the end of a silent period.

The RTP standard also defines a low-bandwidth
back-channel protocol, the RTP Control Proto-
col (RTCP). Senders and receivers use RTCP to
share reception statistics and other types of in-
formation. Of particular interest in this paper is
the RTCP Extended Highest Sequence Number Re-
ceived (EHSNR) field. The 32-bit EHSNR codes
the highest sequence number that a receiver has ob-
served from a sender. The EHSNR also codes the
number of sequence number rollovers seen by the re-
ceiver.

Applications that send multiple RTP streams code
synchronization information in RTCP packets, by
specifying the wall-clock time that corresponds to an
RTP timestamp value. In videoconferencing appli-
cations, receivers use these RTCP fields for lip-sync.

Because RTP supports multicast UDP (many par-
ties sending and receiving to the same network ad-
dress), RTCP is carefully designed to scale with the
number of session participants. As the number of
parties in a session increase, the rate of RTCP trans-
mission by each party decreases, so that total RTCP
session bandwidth does not exceed a fixed fraction
of the total session bandwidth.

Finally, we note that although RTP was designed
for use with unreliable network protocols, it is pos-
sible to map RTP packets to reliable byte-stream
protocols, such as the Transmission Control Proto-
col (TCP, [27]).

3. RTP MIDI DESIGN GOALS

In this section, we describe the design goals of the
RTP MIDI payload format.

At a minimum, a good payload format partitions
media data into packets in a way that minimizes
the impact of lost and late packets. In addition, a
payload format may provide tools that receivers use
to cope with lost and late packets.

What sort of resiliency tools are appropriate for RTP
MIDI? Consider a simple payload format that codes
one complete MIDI command in each packet. As-
sume that each packet either arrives with a fixed
transmission latency, or is lost during transmission.
In the latter case, a lost packet may cause an audio
artifact. We classify artifacts into two categories:

• Transient artifacts. Transient artifacts produce
immediate but short-term glitches. For exam-
ple, a lost MIDI NoteOn (0x9) command pro-
duces a transient artifact: one note fails to play,
but the artifact does not extend beyond the end
of that note.

• Indefinite artifacts. Indefinite artifacts produce
long-lasting errors. For example, a lost MIDI
NoteOff (0x8) command may produce an indef-
inite artifact: the note that should have been
ended by the lost NoteOff command may sus-
tain indefinitely. As a second example, the loss
of a MIDI Control Change (0xB) command for
controller number 7 (Channel Volume) may pro-
duce an indefinite artifact: after the loss, all
notes on the channel may play too softly or too
loudly.
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|B|J|Z|P|LEN... | MIDI list ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Recovery journal ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Fig. 2: RTP MIDI payload format (“...” denotes variable-length fields)

Transient artifacts are clearly undesirable. However,
indefinite artifacts are intolerable. One design goal
for RTP MIDI was the elimination of indefinite ar-
tifacts in a performance rendered from a lossy RTP
MIDI stream. A second design goal was the mini-
mization of the frequency and severity of transient
artifacts. The payload format realizes these goals
via a resiliency tool, the recovery journal system.

A third design goal was generality. The range of po-
tential RTP MIDI applications is wide, and each ap-
plication class has its own requirements. Whenever
possible, we made design choices that were inclusive
to this application pool.

4. PAYLOAD FORMAT OVERVIEW

The RTP MIDI payload format maps a MIDI com-
mand stream (16 voice channels + systems com-
mands) onto an RTP stream. To send more than
16 voice channels over RTP, applications send sev-
eral synchronized RTP MIDI streams.

Figure 2 shows the structure of the payload. The
MIDI command section begins with a variable-
length header. If the LEN header field is non-zero, a
MIDI list field follows the header. The MIDI list
codes timestamped MIDI commands, and provides
the essential service of the payload format. The MIDI
list has a size of LEN octets (octet is an IETF term
for 8-bit bytes).

If the J header bit is set to 1, a variable-length
Recovery journal field appears at the end of the
packet. The recovery journal system uses this field
to provide resiliency to lost packets. We describe the
recovery journal system in Sections 5 and 6 of this
paper. In this remainder of this section, we describe
the MIDI list.

Two MIDI list sizes are supported. If the B header
bit is set to 0, the LEN field is 4 bits long, supporting
a maximum MIDI list size of 15 octets. This mode
is intended for interactive applications, that usually
send one MIDI command per packet to minimize
encoding latency.

If the B header bit is set to 1, the LEN field is 12 bits
long, supporting a maximum MIDI list size of 4095
octets. This mode is intended for content-streaming
applications, that encode many MIDI commands per
packet to amortize header and journal overhead.

Figure 3 shows the MIDI list structure: a paired
list of Delta Time fields and MIDI Command fields.
If the Z header bit is set to 1, the Delta Time 0
field is absent from the list, and MIDI Command 0
has an implicit delta time value of 0.

Each MIDI Command field codes one of the MIDI
command types that may legally appear on a MIDI
1.0 DIN cable [2]. The first channel command in the
list must begin with a status octet, but subsequent
channel commands may use running status [2].

As a rule, each MIDI Command field codes a complete
command, in the binary command format defined in
[2]. However, this rule has several exceptions, to
handle MIDI constructs such as System Exclusive
commands and System Real-time messages. See [4]
for details.

4.1. Timestamps

The base timestamp of an RTP MIDI packet is set
by the 32-bit RTP header timestamp field (Figure
1). The Delta Time fields in the MIDI list encode
the timing of individual MIDI commands relative to
the base timestamp of the packet, using an algorithm
we now describe.
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Delta Time 0 (if Z = 1) | MIDI Command 0 ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Delta Time 1 ... | MIDI Command 1 ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Delta Time 2 ... | MIDI Command 2 ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ..... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Delta Time N ... | MIDI Command N (may be empty) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Fig. 3: MIDI list structure (“Z” as shown in Figure 2)

The Delta Time fields use a modified form of the
MIDI File delta time syntax [2]. RTP MIDI delta
times use 1-4 octet fields to encode 32-bit unsigned
integers. Figure 4 shows the encoded and decoded
forms of delta times. The units of decoded delta
times match the units of the RTP header timestamp.

The command timestamp for MIDI Command K is the
summation (modulo 232) of the RTP timestamp for
the packet and decoded delta times 0 through K.

By default, a command timestamp indicates the ex-
ecution time for the command. The difference be-
tween two timestamps indicates the time delay be-
tween the execution of the commands. This differ-
ence may be zero, coding simultaneous execution.

This interpretation of timestamps works well for
transcoding a Standard MIDI File (SMF, [2]) into
an RTP MIDI stream, as SMFs code a timestamp
for each MIDI command stored in the file. Other
interpretations of timestamps may work better for
transcoding a MIDI source that uses implicit com-
mand timing (such as MIDI 1.0 DIN cables) into an
RTP MIDI stream. The timestamp interpretation
for a stream may be configured during session setup
(Section 10).

Note that RTP timestamps have units of Hz, not
musical score beats. To stream a MIDI file over RTP,
senders use the tempo map of the MIDI file (encoded
as Meta-Events) to convert metric units into Hz.

In a MIDI stream, the RTP header timestamps for
two sequential packets may be identical, or the sec-

ond packet may have a timestamp arbitrarily larger
than the first packet (modulo 232). All command
timestamps in the MIDI list of a packet must be
less than or equal to the RTP header timestamp of
the next packet in the stream (modulo 232).

Returning to Figure 3, we note that the last MIDI
Command field in the MIDI list may be empty.
Senders may use this feature to precisely set the me-
dia time of a packet. The media time is the total
amount of time coded by the packet, and is com-
puted by subtracting the last command timestamp
in the MIDI list from the RTP timestamp (modulo
232).

The ability to precisely set packet media times may
be important for compatibility with audio streaming
architectures that expect all packets in a stream to
code the same period of media time.

Interactive applications often use a 0 ms packet me-
dia time to minimize encoding latency. In this mode
of operation, the MIDI list of each packet codes
a single MIDI command. The payload header’s Z
bit is set to 0, so that the RTP timestamp acts as
the timestamp for the MIDI command. Thus, the
packet codes a moment in time, and the media time
coded by the packet is 0 ms.

5. THE RECOVERY JOURNAL SYSTEM

MIDI is a fragile code. As we discussed in Section 3,
a single lost command in a MIDI stream may pro-
duce an artifact of indefinite duration in the ren-
dered audio performance.
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|S|Y|A|R|TOTCHAN| Checkpoint Packet Seqnum | S-journal ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Channel journals ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Fig. 5: Top-level recovery journal format.

One-Octet Delta Time:

Encoded form: 0ddddddd

Decoded form: 00000000 00000000 00000000 0ddddddd

Two-Octet Delta Time:

Encoded form: 1ccccccc 0ddddddd

Decoded form: 00000000 00000000 00cccccc cddddddd

Three-Octet Delta Time:

Encoded form: 1bbbbbbb 1ccccccc 0ddddddd

Decoded form: 00000000 000bbbbb bbcccccc cddddddd

Four-Octet Delta Time:

Encoded form: 1aaaaaaa 1bbbbbbb 1ccccccc 0ddddddd

Decoded form: 0000aaaa aaabbbbb bbcccccc cddddddd

Fig. 4: Decoding delta time formats.

In this section, we introduce the recovery journal
system. The system ensures that the audio rendered
from an RTP MIDI stream does not contain indefi-
nite artifacts, even if the stream is sent over a net-
work that loses packets.

The recovery journal system does not use packet re-
transmission. Instead, if the system is in use, each
packet includes a special section, called the recovery
journal.

The recovery journal codes the history of the stream,
back to an earlier packet called the checkpoint
packet. The range of coverage for the journal is
called the checkpoint history. The recovery journal
codes the information necessary to recover from the
loss of an arbitrary number of packets in the check-
point history.

When a receiver detects a packet loss, it compares

its own knowledge about the history of the stream
with the history information coded in the recovery
journal of the packet that ends the loss event. By
noting the differences in these two versions of the
past, a receiver is able to transform all indefinite
artifacts in the rendered performance into transient
artifacts, by executing MIDI commands to repair the
stream.

In most respects, senders are not required to use
specific algorithms to create recovery journals, and
receivers are not required to use specific algorithms
to locate artifacts in a journal or to perform repairs
on a stream. Senders may use any algorithm that
produces correct journals for a stream (as defined
by [4]), and receivers may use any algorithm that
correctly repairs the stream (as defined by [4]).

5.1. Bandwidth Efficiency

To simplify our introduction to the journal system,
we described the journal as coding a “history” of the
stream. However, if the journal coded a simple log
of all MIDI commands in the stream, the payload
size would grow in an unbounded way in time.

In practice, two factors control the journal size.
First, the journal does not code a command log. In-
stead, the journal codes the minimal amount of data
needed to ensure that the rendered performance does
not contain indefinite artifacts. In the general case,
the journal does not code sufficient information to
reconstruct the MIDI list fields of lost packets.

In addition, in preparing a journal, senders exam-
ine the the most recent RTCP packet from each re-
ceiver (in particular, the EHSNR field described in
Section 2). The sender selects a checkpoint packet
identity that generates the smallest recovery journal
that provides protection from indefinite artifacts.

AES 117th Convention, San Francisco, CA, USA, 2004 October 28–31

Page 7 of 16



Lazzaro AND Wawrzynek RTP Payload Format for MIDI

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|S| CHAN |R| LENGTH |P|C|M|W|N|E|T|A| Chapters ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Fig. 6: Channel journal format.

As a general rule, a sender trims the recovery jour-
nal in response to a received RTCP packet, and a
sender expands the recovery journal after sending
an RTP packet. After an initial transient, the av-
erage amount of session time coded by the journal
reaches an equilibrium value. For typical sessions,
the average value is in the 1-10 second range.

[3] measured a musical performance system running
over wide area network that used an early version
of RTP MIDI. The MIDI musician in these exper-
iments was a fast-playing pianist, who also made
heavy use of continuous controllers. The median
payload bandwidth of the stream was 4.7 kb/s. This
bandwidth is in the range of modern Internet tele-
phony voice codecs.

6. RECOVERY JOURNAL STRUCTURE

In this section, we describe the design of the recov-
ery journal bitfields. The recovery journal has a hi-
erarchical structure. Figure 5 shows the top level of
the recovery journal. This structure is placed in the
Recovery journal field in Figure 2.

The top-level bitfield may include a system journal
(S-Journal), which codes recovery information for
MIDI Systems commands, and Channel Journals,
which code recovery information for a specific MIDI
channel (0-15).

In this discussion, we focus on the channel journal.
Figure 6 shows the channel journal format. Header
fields specify the MIDI channel number CHAN and
the channel journal size LENGTH.

A list of chapters follows the header: different chap-
ters code recovery information for different MIDI
command types.

We list the chapter types below:

• Chapter P: Program Change (0xC)

• Chapter C: Control Change (0xB)

• Chapter M: Parameter System (part of 0xB)

• Chapter W: Pitch Wheel (0xE)

• Chapter N: NoteOff (0x8), NoteOn (0x9)

• Chapter E: Note Command Extras (0x8, 0x9)

• Chapter T: Channel Aftertouch (0xD)

• Chapter A: Poly Aftertouch (0xA)

The bit flags at the end of the header
(P|C|M|W|N|E|T|A) act as a table of contents
for the chapter list. If the bit flag associated with a
chapter is set, the chapter appears in the Chapters
field.

For each chapter, the payload format specification
[4] precisely defines when the chapter must appear
in the journal, and what recovery information the
chapter must code. These definitions form the heart
of the recovery journal system. In an implicit way,
they tell senders how to create recovery journals that
protect against indefinite artifacts, and they tell re-
ceivers how to repair the stream.

In this discussion, we confine our attention to a sim-
ple chapter. Chapter W protects the MIDI Pitch
Wheel command (0xE). Typically, MIDI piano key-
boards send Pitch Wheel commands when the player
moves a “pitch wheel” controller located next to the
piano keys. Sound generators react to Pitch Wheel
commands by “bending” the pitch of current and
future notes.

Figure 7 shows the Chapter W bitfield. Chapter
W has a fixed size of 2 octets. Roughly speaking,
Chapter W must appear in a channel journal if a
Pitch Wheel command on the channel appears in
the checkpoint history. The FIRST and SECOND fields
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0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|S| FIRST |R| SECOND |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Fig. 7: Chapter W format.

code the 14-bit data value of the most recent Pitch
Wheel command on the channel.

Note that Chapter W differs from a simple com-
mand log in two respects: only the most recent Pitch
Wheel command is coded in the journal, and Chap-
ter W need not appear in the journal once this com-
mand no longer appears in the checkpoint history.
Senders use these features to minimize the size of
the recovery journal.

A receiver uses Chapter W to repair a stream that
has lost Pitch Wheel commands, as we describe in
detail later in this paper (Section 8).

Finally, we note that the structures shown in Figures
5, 6, and 7 begin with an S flag bit. S bits appear
throughout the recovery journal, and mark the parts
of the journal that have recently changed. Receivers
use the S bits to speed the search for indefinite arti-
facts, in the common case of a loss event consisting
of a single lost packet.

7. SENDING RTP MIDI STREAMS

So far in this paper, we have focused on the static
qualities of RTP MIDI: the layout of the payload
bitfields and the meaning of the bitfield values.

In the next two sections, we focus on the dynamic
qualities of RTP MIDI: the algorithms senders use to
transmit packets (this section), and the algorithms
receivers use to render packets (Section 8). These
algorithms are not normative, and may vary within
and across application classes. The protocol de-
sign ensures that applications that use different al-
gorithms are able to interoperate.

We describe these algorithms in the context of a mu-
sic performance application. Two musicians, located
in different physical locations, interact over a net-
work to perform as they would if located in the same
room. Underlying the performances are RTP MIDI

streams sent over unicast UDP. The description be-
low is an abbreviated version of [3] and [5].

In this example, the two musicians use MIDI con-
trollers that are connected to networked personal
computers. Each computer sends and receives an
RTP MIDI stream over the network. Each computer
generates audio in response to the MIDI produced
by the local player and in response the received RTP
MIDI stream. The two computers execute identical
rendering algorithms for the MIDI commands asso-
ciated with a particular musician.

The packet sending system is a real-time data-driven
entity. On an on-going basis, the sender checks
to see if the local player has generated new MIDI
data. At any time, the sender may transmit a new
RTP packet to the remote player, for the reasons
described below:

1. New MIDI data has been generated by the local
player, and the sender decides it is time to issue
a packet coding the data.

2. The local player has not generated new MIDI
data, but the sender decides too much time has
elapsed since the last RTP packet transmission.
The sender transmits a packet in order to relay
updated RTP header and recovery journal data.

In the first case, the MIDI list field (Figure 3) codes
the new MIDI data. In the second case, the MIDI
list is empty.

We emphasize the decisions made by the sender,
because these decisions determine the qual-
ity/bandwidth tradeoff of the stream.

For example, to minimize queuing latency, the
sender may wish to send an RTP packet as soon as a
complete MIDI command arrives from the local mu-
sician. Alternatively, by waiting a few milliseconds
for the potential arrival of a follow-on command, a
sender may significantly reduce stream bandwidth.
In this case, the best sending algorithm depends on
desired quality/bandwidth tradeoff.

As a second example, consider the situation where
the local player produces a MIDI NoteOff command
(which the sender promptly transmits in a packet),
but then 5 seconds pass before the player produces

AES 117th Convention, San Francisco, CA, USA, 2004 October 28–31

Page 9 of 16



Lazzaro AND Wawrzynek RTP Payload Format for MIDI

another MIDI command (which the sender transmits
in a second packet).

What happens if the packet coding the NoteOff is
lost? The receiver is not be aware of the packet loss
incident for 5 seconds, and the rendered MIDI per-
formance contains a note that sounds for 5 seconds
too long. The note ends upon reception of the sec-
ond packet, because the recovery journal instructs
the receiver to end the note.

To reduce the severity of this transient artifact,
a sender may transmit packets with empty MIDI
lists to “guard” the stream during silent sections.
In this example, if a guard packet was sent 10 ms
after the NoteOff packet, and if the guard packet
arrived safely at the receiver with normal network
latency, the perceptual impact of the transient ar-
tifact would be small. The best design for a guard
algorithm depends on the desired quality/bandwidth
tradeoff.

Finally, we note that senders reduce the packet send-
ing rate in response to network congestion, as re-
quired by [1].

7.1. Sender Journal Maintenance

A complete description of how a sender generates the
recovery journal for a packet is beyond the scope
of this paper. See [5] for a thorough description,
complete with C language data structures.

Here, we show a brief sketch of the packetization
process. A sender prepares a new RTP MIDI packet
by following these steps:

1. Generate the RTP header for the new packet
(Figure 1).

2. Generate the payload header (Figure 2) and
MIDI list field (Figure 3) for the new packet.

3. Generate the recovery journal for the new
packet. To do so, the sender encodes the con-
tents of the Recovery Journal Sending Struc-
ture (RJSS) into the bitfields shown in Figure
5-7 (and into many other bitfields not shown in
this paper). The RJSS is a special data struc-
ture that codes a history of the stream.

4. Send the packet over the network.

5. Update the RJSS to code the commands in
the MIDI list field of the packet sent in Step
4. This step extends the checkpoint history to
cover the sent commands.

In addition to sending RTP packets, the sender
also monitors incoming RTCP packets (Section 2).
RTCP packets include the EHSNR field, which in-
dicates the most recent RTP packet a receiver has
seen. The sender uses the EHSNR value to remove
RJSS entries that are no longer relevant to any re-
ceiver. In this way, the sender trims the recovery
journal sent in the next packet.

8. RECEIVING RTP MIDI STREAMS

In this section, we discuss receiver algorithms for
RTP MIDI streams. The description below is an
abbreviated version of [3] and [5].

To begin, we imagine that the application runs over
an ideal network. On this network, packets are never
lost or reordered, and the end-to-end latency is con-
stant.

In addition, the senders in this application ensure
that all commands coded in a packet’s MIDI list
share the same timestamp, which is identical to the
packet’s RTP timestamp. The senders also maintain
a constant relationship between the RTP timestamp
value and the packet sending time: if two packets
have timestamps that differ by 1 second, the second
packet is sent exactly 1 second after the first packet.

Under these conditions, a simple receiver algorithm
may be used to render a high-quality performance.
Upon the receipt of an RTP packet, the receiver im-
mediately executes the commands coded in the MIDI
list. The command timestamps are ignored.

Unfortunately, this simple algorithm breaks down
once we relax our assumptions about the network
and the sender:

• If we permit lost packets to occur in the net-
work, the algorithm may produce indefinite and
transient audio artifacts.

• If we permit the network to exhibit variable la-
tency, the algorithm modulates the network jit-
ter onto the rendered audio.
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• If we permit a MIDI list to code commands
with different timestamps, the algorithm adds
temporal jitter to the rendered performance, as
it ignores MIDI list timestamps.

To compensate for sender and network jitter, and
to support the use of timestamps in MIDI lists,
receivers may use the following methods:

• Playout buffering. RTP audio receivers use a
playout buffer to smooth network jitter. Audio
buffer architectures are easy to adapt to RTP
MIDI. As in the audio case, a playout buffer in-
creases the end-to-end latency of an RTP MIDI
stream.

• Semantic filtering. For latency-sensitive appli-
cations running over networks with low jitter,
semantic filtering offers an alternative to buffer-
ing. The receiver maintains a model of network
latency, and uses it to mark each MIDI com-
mand as “on-time” or “late”. On-time com-
mands are executed immediately. Late com-
mands are handled in a command-specific way.
For example, the receiver in [3] discards late
NoteOn commands, but executes all other late
commands.

To handle lost packets, receivers use the recovery
journal system, as we discuss next.

8.1. Receivers and Recovery Journals

To prepare for recovery from lost packets, receivers
maintain a special data structure, the Recovery
Journal Receiver Structure (RJSS).

The RJRS codes information about the MIDI com-
mands the receiver executes (both incoming stream
commands and self-generated recovery commands).
At the start of the stream, the RJRS is initialized
to code that no commands have been executed. Im-
mediately after executing a MIDI command, the re-
ceiver updates the RJRS with information about the
command.

The receiver keeps track of the highest sequence
number received in the stream, and predicts that an
incoming packet will have a sequence number one
greater than this value. If the sequence number of

an incoming packet is greater than the prediction, a
packet loss has occurred.

Upon the detection of a packet loss, the receiver ex-
amines the recovery journal of the packet that ends
the loss. For each channel journal (Figure 6) in the
recovery journal, the receiver compares the data in
each chapter journal to the RJRS data for the chap-
ter. If the data are inconsistent, the algorithm infers
that MIDI command(s) related to the chapter jour-
nal have been lost. The recovery algorithm executes
MIDI commands to repair the loss, and updates the
RJRS to reflect the repair. Payload features, such
as the S bits described in Section 6, streamline the
comparison process.

As an example of a repair operation, we consider a
repair algorithm for Chapter W (the Pitch Wheel
command chapter, shown in Figure 7). For each
MIDI channel, the RJRS codes the 14-bit data value
of the most recent Pitch Wheel command that has
arrived on a channel.

At the end of a loss event, a receiver may find a
Chapter W bitfield in a channel journal. If the value
in the Chapter W bitfield does not match the RJRS
pitch wheel value, one or more commands have been
lost.

To recover from this loss, the receiver immediately
executes a MIDI Pitch Wheel command on the chan-
nel, using the data value coded in the recovery jour-
nal. The receiver then updates the RJRS to reflect
the executed command.

9. SESSION MANAGEMENT OVERVIEW

So far in this paper, we have focused on the opera-
tion of an ongoing RTP MIDI stream. To conclude
the paper, we look at the protocol features for cus-
tomizing the characteristics of a stream at the start
of a session.

RTP MIDI’s customization tools do not work within
RTP itself. Instead, the tools work within the IETF
protocols that are used for media session manage-
ment. The Session Initiation Protocol (SIP, [19])
performs session management for interactive ap-
plications such as telephony, and the Real Time
Streaming Protocol (RTSP, [20]) performs session
management for content-streaming applications like
Internet radio. In this paper we focus on SIP, whose
operation we describe below.
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9.1. Session Initiation Protocol (SIP)

In conventional switched-circuit telephony, a person
who subscribes to a telephone service is given a tele-
phone number by the phone company. The person
distributes this number to others, who may contact
the person by dialing the number on the keypad of
their own phone.

We use the term call management to describe the
actions a phone system takes to support the user
experience of dialing the number and listening for a
ringing or busy signal, and for other services such as
call termination. Call management does not include
audio transport.

SIP is able to perform call management for inter-
active Internet multimedia sessions (Internet tele-
phony, video conferences, etc). Following the tele-
phony analogy, we use the term SIP phone (or just
phone) to describe user devices, even though the
form and media capabilities of a SIP phone may
share little in common with conventional telephones
(particularly true for MIDI “phones”!).

SIP is a very general protocol, and can support
many models for user identity. In this paper, we
assume that a user’s SIP identity takes the form
of a SIP URL, such as sip:user@machine. The
sip:machine is controlled by an entity that has
some sort of relationship to the user (employer, ser-
vice provider, etc). The user is the account name
the entity provides to the user.

For example, sip:lazzaro@cs.berkeley.edu could
be the SIP identity for one of the authors of this pa-
per. Just as the author distributes his email address
so that others may email him, the author distributes
his SIP URL so that others may phone him.

sip:cs.berkeley.edu provides a service to accept
phone calls for lazzaro, even if he is not able to take
calls at the moment the call arrives. If lazzaro is
unavailable, the call might be forwarded to a net-
work service that acts as an answering machine.

To signal that he is available to accept calls,
lazzaro sends a SIP REGISTER request to
sip:cs.berkeley.edu. Information sent in the
REGISTER includes contact information for the phone
(network address, ports) and the types of media
the phone supports (audio, video, text, MIDI).
After registration, sip:cs.berkeley.edu routes

SIP requests for sip:lazzaro@cs.berkeley.edu to
lazzaro’s phone.

Imagine that marylou, with SIP URL
sip:marylou@example.com wishes to place a
call to sip:lazzaro@cs.berkeley.edu. When
marylou places the call, her phone creates a SIP
INVITE request and sends it to sip:example.com.
The INVITE consists of two parts: a list of SIP
headers, followed by a message body.

The SIP headers, like the headers on an email mes-
sage, encode the SIP protocol itself. For example,
SIP header fields would specify that the message is
an INVITE request to start a call, and specify the
recipient as sip:lazzaro@cs.berkeley.edu.

Upon reception of the INVITE, sip:example.com ex-
amines the SIP headers and forwards the INVITE to
sip:cs.berkeley.edu, which in turn forwards the
INVITE to lazzaro’s SIP phone. Thus, marylou’s
phone sends an INVITE to lazzaro’s phone, even
though marylou’s phone did not know the network
address of the phone (all it knew was lazzaro’s SIP
URL).

The message body of the INVITE, like the message
body of the email, is intended for the recipient.
In our example, the message body is a session de-
scription, coded in the Session Description Proto-
col (SDP, [21]), that describes the session marylou
wishes to start with lazzaro.

The session description encodes the network ad-
dress and port numbers where marylou’s phone
wishes to receive the media stream, and the proto-
cols the phone wishes to use for media (for example,
RTP/AVP over UDP, using the RTP MIDI payload
format for a network musical performance session).

If lazzaro wishes to take the call, and if the
session description contents are acceptable to his
SIP phone, a SIP OK response is sent back to
sip:marylou@example.com. The body of the OK
also contains a session description, that encodes in-
formation about how lazzaro’s phone wishes to re-
ceive its media stream. Upon receipt of the OK,
marylou’s phone sends lazzaro a SIP ACK message,
to complete the three-way handshake that starts a
SIP call (INVITE, OK, ACK).

The phones use the information in the received ses-
sion descriptions to start bidirectional RTP MIDI
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v=0
o=lazzaro 2520644554 2838152170 IN IP4
first.example.net

s=Example
t=0 0
m=audio 5004 RTP/AVP 96
c=IN IP4 192.0.2.94
a=rtpmap:96 rtp-midi/44100

Fig. 8: Minimal native session description.

flows, and the performance begins. Note that
the media flows directly between marylou’s phone
and lazzaro’s phone, without passing through
sip:cs.berkeley.edu or sip:example.com.

We note that upon receipt of marylou’s INVITE,
lazzaro’s SIP phone might examine the session de-
scription and find aspects of it incompatible or un-
desirable. In this case, the phone may choose to
reject the INVITE (via a SIP rejection response to
the INVITE), and then propose an alternative session
description in a new INVITE to marylou. This mech-
anism provides part of a simple session description
negotiation system, called the Offer/Answer Proto-
col [28].

SIP also lets callers query a call recipient for its de-
sired session description details before placing the
call, using the OPTIONS request. OPTIONS is sent
to a user’s SIP URL, which returns a user’s prefer-
ences coded in a session description. A caller uses
the information returned by OPTIONS to create an
acceptable INVITE request.

10. SESSION DESCRIPTION EXAMPLES

In this section, we show example session descriptions
for RTP MIDI sessions. Session descriptions are
coded with the Session Description Protocol (SDP,
[21]). We also introduce the RTP MIDI MIME pa-
rameters, which may be used to customize sessions.

RTP MIDI streams come in two flavors: native
streams, which are used by general-purpose applica-
tions, and mpeg4-generic streams, which are used
by MPEG 4 applications [17].

Figure 8 shows a minimal native session description.
We refer to this session description as minimal be-
cause it does not use RTP MIDI parameters to cus-
tomize the stream. The list below describes the key

information coded in session descriptions (see [21]
for more details):

• The media line (begins with m=) codes that an
audio RTP/AVP stream is delivered to UDP
port 5004, and that the PT header field of each
RTP packet in the stream is set to 96. Note
that RTP MIDI is classified as an audio payload
format.

• The connection line (begins with c=) codes that
the stream is sent to the IP4 network address
192.0.2.94.

• The rtpmap attribute line (begins with a=)
codes that the stream uses RTP MIDI, with a
clock rate of 44,100 Hz.

For typesetting reasons, the session description ex-
amples in Figures 8-10 break long SDP lines over
several print lines. Note that such line breaks are
not legal SDP syntax.

10.1. Minimal Streams

In [4], we define the characteristics of a minimal
stream. Minimal streams are intended to provide
a reasonable set of default behaviors, that work well
for many general-purpose MIDI applications.

A minimal stream sent over UDP transport (such as
the minimal native stream shown in Figure 8) uses
the recovery journal; a minimal stream sent over
TCP does not use the journal. Minimal streams
interpret MIDI command timestamps as execution
times (as described in Section 3.1), and permit the
amount of media time coded by a packet to range
from 0-200 ms.

A minimal mpeg4-generic stream uses of one of the
MPEG 4 renderers: General MIDI [2], DLS 2 [29],
or Structured Audio [17]. A minimal native stream
does not specify a rendering method.

Figure 9 shows a session description for a minimal
mpeg4-generic RTP stream. The parameters on
the a=fmtp line specify that General MIDI must be
used to render the stream.

10.2. Customizing Streams

If a minimal native or mpeg4-generic stream is not
a good match for an application, RTP MIDI param-
eters and standard SDP attribute parameters may
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v=0
o=lazzaro 2520644554 2838152170 IN IP6
first.example.net

s=Example
t=0 0
m=audio 5004 RTP/AVP 96
c=IN IP6 FF1E:03AD::7F2E:172A:1E24
a=rtpmap:96 mpeg4-generic/44100
a=fmtp:96 streamtype=5; mode=rtp-midi;
profile-level-id=12; config=7A124D54
6864000000060000000100604D54726B0000
000400FF2F000

Fig. 9: Minimal mpeg4-generic description.

v=0
o=lazzaro 2520644554 2838152170 IN IP4
first.example.net

s=Example
t=0 0
m=audio 5004 RTP/AVP 96
c=IN IP4 192.0.2.94
a=rtpmap:96 rtp-midi/44100
a=fmtp:96 tsmode=async; linerate=320000;
octpos=first

a=sendonly

Fig. 10: A session that uses RTP MIDI parameters

be used to customize the stream. [4] defines usage
guidelines for 28 parameters, grouped into 5 func-
tional roles:

• Journalling. Parameters offer fine control over
the recovery journal system. Parties may also
use the parameters to define the subset of MIDI
commands that appear in a stream.

• Timestamp semantics. [4] defines parame-
ters to specify three types of semantics for MIDI
command timestamps: the default semantics
described in Section 3.1 of this paper, and two
types of semantics that are useful for sampling
MIDI 1.0 DIN cable flows.

• Packet timing. Parameters let parties set the
average and maximum amount of media time
coded in a packet, and let parties set a minimum

sending rate. These parameters let a simple re-
ceiver implementation signal its stream prefer-
ences to a sender.

• Multiple streams. Parameters support split-
ting a single MIDI command stream (16 voice
channels + systems) into multiple RTP MIDI
streams. An application may use these param-
eters to send voice channel commands over a
UDP stream while sending system commands
over a TCP stream. Parameters also support
sending several MIDI sources in an ordered way
(stream #1 codes voice channels 0-15, stream
#2 codes voice channels 16-31, etc). Related
parameters support multi-stream synchroniza-
tion.

• Rendering. A set of parameters specify the
rendering method for a stream. The specifica-
tion method is extensible: renderer developers
may register a MIME type [18], which may be
used in session descriptions to specify the ren-
derer. Operating system APIs may also be reg-
istered, so that an RTP stream may be pre-
sented to applications in the same manner as a
local FireWire or USB MIDI stream.

Figure 10 shows an example use of RTP MIDI pa-
rameters in a session description. The a=fmtp line
uses the tsmode, linerate, and octpos parame-
ters to specify that command timestamps represent
an asynchronous sampling of a MIDI time-of-arrival
source (such as MIDI 1.0 DIN cables).

This specification is useful to the receiver, because
it indicates that two commands cannot have identi-
cal timestamps (because only one command appears
on the source at a given moment). Therefore, com-
mands whose timestamps indicate a relative arrival
time limited by the cable sending rate (coded by
linerate) are indistinguishable from simultaneous
commands.
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