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ABSTRACT
We have designed, fabricated, and tested a series of compact CMOS
integrated circuits that realize the winner-take-all function. These
analog, continuous-time circuits use only O(n) of interconnect to
perform this function. We have also modified the winner-take-all
circuit, realizing a circuit that computes local nonlinear inhibition.

Two general types of inhibition mediate activity in neural systems: subtractive in-
hibition, which sets a zero level for the computation, and multiplicative (nonlinear)
inhibition, which regulates the gain of the computation. We report a physical real-
ization of general nonlinear inhibition in its extreme form, known as winner-take-all.

We have designed and fabricated a series of compact, completely functional CMOS
integrated circuits that realize the winner-take-all function, using the full analog
nature of the medium. This circuit has been used successfully as a component
in several VLSI sensory systems that perform auditory localization (Lazzaro and
Mead, in press) and visual stereopsis (Mahowald and Delbruck, 1988). Winner-
take-all circuits with over 170 inputs function correctly in these sensory systems.

We have also modified this global winner-take-all circuit, realizing a circuit that
computes local nonlinear inhibition. The circuit allows multiple winners in the net-
work, and is well suited for use in systems that represent a feature space topograph-
ically and that process several features in parallel. We have designed, fabricated,
and tested a CMOS integrated circuit that computes locally the winner-take-all
function of spatially ordered input.



THE WINNER-TAKE-ALL CIRCUIT

Figure 1 is a schematic diagram of the winner-take-all circuit. A single wire, asso-
ciated with the potential Vc, computes the inhibition for the entire circuit; for an
n neuron circuit, this wire is O(n) long. To compute the global inhibition, each
neuron k contributes a current onto this common wire, using transistor T2k . To
apply this global inhibition locally, each neuron responds to the common wire volt-
age Vc, using transistor T1k . This computation is continuous in time; no clocks
are used. The circuit exhibits no hysteresis, and operates with a time constant
related to the size of the largest input. The output representation of the circuit
is not binary; the winning output encodes the logarithm of its associated input.
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Figure 1. Schematic diagram of the winner-take-all circuit. Each neuron receives
a unidirectional current input Ik; the output voltages V1 . . . Vn represent the result
of the winner-take-all computation. If Ik = max(I1 . . . In), then Vk is a logarithmic
function of Ik; if Ij ! Ik, then Vj ≈ 0.

A static and dynamic analysis of the two-neuron circuit illustrates these system
properties. Figure 2 shows a schematic diagram of a two-neuron winner-take-all
circuit. To understand the behavior of the circuit, we first consider the input
condition I1 = I2 ≡ Im. Transistors T11 and T12 have identical potentials at gate
and source, and are both sinking Im; thus, the drain potentials V1 and V2 must
be equal. Transistors T21 and T22 have identical source, drain, and gate potentials,
and therefore must sink the identical current Ic1 = Ic2 = Ic/2. In the subthreshold
region of operation, the equation Im = Io exp(Vc/Vo) describes transistors T11 and
T12 , where Io is a fabrication parameter, and Vo = kT/qκ. Likewise, the equation
Ic/2 = Io exp((Vm − Vc)/Vo), where Vm ≡ V1 = V2, describes transistors T21 and
T22 . Solving for Vm(Im, Ic) yields

Vm = Vo ln(
Im

Io
) + Vo ln(

Ic

2Io
). (1)



Thus, for equal input currents, the circuit produces equal output voltages; this
behavior is desirable for a winner-take-all circuit. In addition, the output voltage
Vm logarithmically encodes the magnitude of the input current Im.
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Figure 2. Schematic diagram of a two-neuron winner-take-all circuit.

The input condition I1 = Im + δi, I2 = Im illustrates the inhibitory action of the
circuit. Transistor T11 must sink δi more current than in the previous example; as a
result, the gate voltage of T11 rises. Transistors T11 and T12 share a common gate,
however; thus, T12 must also sink Im + δi. But only Im is present at the drain of
T12 . To compensate, the drain voltage of T12 , V2, must decrease. For small δis, the
Early effect serves to decrease the current through T12 , decreasing V2 linearly with
δi. For large δis, T12 must leave saturation, driving V2 to approximately 0 volts.
As desired, the output associated with the smaller input diminishes. For large δis,
Ic2 ≈ 0, and Ic1 ≈ Ic. The equation Im + δi = Io exp(Vc/Vo) describes transistor
T11 , and the equation Ic = Io exp((V1 − Vc)/Vo) describes transistor T21 . Solving
for V1 yields

V1 = Vo ln(
Im + δi

Io
) + Vo ln(

Ic

Io
). (2)

The winning output encodes the logarithm of the associated input. The symmetrical
circuit topology ensures similar behavior for increases in I2 relative to I1.

Equation 2 predicts the winning response of the circuit; a more complex expression,
derived in (Lazzaro et.al., 1989), predicts the losing and crossover response of the
circuit. Figure 3 is a plot of this analysis, fit to experimental data. Figure 4 shows
the wide dynamic range and logarithmic properties of the circuit; the experiment in
Figure 3 is repeated for several values of I2, ranging over four orders of magnitude.
The conductance of transistors T11 and T12 determines the losing response of the
circuit. Variants of the winner-take-all circuit shown in (Lazzaro et. al., 1988)
achieve losing responses wider and narrower than Figure 3, using circuit and mask
layout techniques.
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Figure 3. Experimental data (circles) and theory (solid lines) for a two-neuron
winner-take-all circuit. I1, the input current of the first neuron, is swept about the
value of I2, the input current of the second neuron; neuron voltage outputs V1 and
V2 are plotted versus normalized input current.
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Figure 4. The experiment of Figure 3 is repeated for several values of I2; experi-
mental data of output voltage response are plotted versus absolute input current on
a log scale. The output voltage V1 = V2 is highlighted with a circle for each exper-
iment. The dashed line is a theoretical expression confirming logarithmic behavior
over four orders of magnitude (Equation 1).



WINNER-TAKE-ALL TIME RESPONSE

A good winner-take-all circuit should be stable, and should not exhibit damped
oscillations (“ringing”) in response to input changes. This section explores these
dynamic properties of our winner-take-all circuit, and predicts the temporal re-
sponse of the circuit. Figure 5 shows the two-neuron winner-take-all circuit, with
capacitances added to model dynamic behavior.

T11

T21

I1

V1

Ic

Vc

V2

I2

T22

T12

Ic1 Ic2

Cc

C C

Figure 5. Schematic diagram of a two-neuron winner-take-all circuit, with ca-
pacitances added for dynamic analysis. C is a large MOS capacitor added to each
neuron for smoothing; Cc models the parasitic capacitance contributed by the gates
of T11 and T12, the drains of T21 and T22, and the interconnect.

(Lazzaro et. al., 1988) shows a small-signal analysis of this circuit. The transfer
function for the circuit has real poles, and thus the circuit is stable and does not ring,
if Ic > 4I(Cc/C), where I1 ≈ I2 ≈ I. Figure 6 compares this bound with experimental
data.

If Ic > 4I(Cc/C), the circuit exhibits first-order behavior. The time constant CVo/I

sets the dynamics of the winning neuron, where Vo = kT/qκ ≈ 40 mV . The time
constant CVE/I sets the dynamics of the losing neuron, where VE ≈ 50 V . Figure 7
compares these predictions with experimental data.
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Figure 6. Experimental data (circles) and theoretical statements (solid line) for a
two-neuron winner-take-all circuit, showing the smallest Ic, for a given I, necessary
for a first-order response to a small-signal step input.
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Figure 7. Experimental data (symbols) and theoretical statements (solid line) for
a two-neuron winner-take-all circuit, showing the time constant of the first-order
response to a small-signal step input. The winning response (filled circles) and
losing response (triangles) of a winner-take-all circuit are shown; the time constants
differ by several orders of magnitude.



THE LOCAL NONLINEAR INHIBITION CIRCUIT

The winner-take-all circuit in Figure 1, as previously explained, locates the largest
input to the circuit. Certain applications require a gentler form of nonlinear inhibi-
tion. Sometimes, a circuit that can represent multiple intensity scales is necessary.
Without circuit modification, the winner-take-all circuit in Figure 1 can perform
this task. (Lazzaro et. al., 1988) explains this mode of operation.

Other applications require a local winner-take-all computation, with each winner
having influence over only a limited spatial area. Figure 8 shows a circuit that
computes the local winner-take-all function. The circuit is identical to the original
winner-take-all circuit, except that each neuron connects to its nearest neighbors
with a nonlinear resistor circuit (Mead, in press). Each resistor conducts a current
Ir in response to a voltage ∆V across it, where Ir = Is tanh(∆V/(2Vo)). Is, the
saturating current of the resistor, is a controllable parameter. The current source,
Ic, present in the original winner-take-all circuit, is distributed between the resistors
in the local winner-take-all circuit.
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Figure 8. Schematic diagram of a section of the local winner-take-all circuit. Each
neuron i receives a unidirectional current input Ii; the output voltages Vi represent
the result of the local winner-take-all computation.

To understand the operation of the local winner-take-all circuit, we consider the
circuit response to a spatial impulse, defined as Ik " I, where I ≡ Ii"=k. Ik " Ik−1

and Ik " Ik+1, so Vck is much larger than Vck−1 and Vck+1 , and the resistor circuits
connecting neuron k with neuron k − 1 and neuron k + 1 saturate. Each resistor
sinks Is current when saturated; transistor T2k

thus conducts 2Is + Ic current. In
the subthreshold region of operation, the equation Ik = Io exp(Vck /Vo) describes
transistor T1k

, and the equation 2Is + Ic = Io exp((Vk − Vck)/Vo) describes transistor



T2k
. Solving for Vk yields

Vk = Vo ln((2Is + Ic)/Io) + Vo ln(Ik/Io). (4)

As in the original winner-take-all circuit, the output of a winning neuron encodes
the logarithm of that neuron’s associated input.

As mentioned, the resistor circuit connecting neuron k with neuron k − 1 sinks Is

current. The current sources Ic associated with neurons k−1, k −2, . . . must supply
this current. If the current source Ic for neuron k − 1 supplies part of this current,
the transistor T2k−1

carries no current, and the neuron output Vk−1 approaches zero.
In this way, a winning neuron inhibits its neighboring neurons.

This inhibitory action does not extend throughout the network. Neuron k needs
only Is current from neurons k−1, k−2, . . . . Thus, neurons sufficiently distant from
neuron k maintain the service of their current source Ic, and the outputs of these
distant neurons can be active. Since, for a spatial impulse, all neurons k − 1, k − 2,
. . . have an equal input current I, all distant neurons have the equal output

Vi#k = Vo ln(Ic/Io) + Vo ln(I/Io). (5)

Similar reasoning applies for neurons k + 1, k + 2, . . . .

The relative values of Is and Ic determine the spatial extent of the inhibitory action.
Figure 9 shows the spatial impulse response of the local winner-take-all circuit, for
different settings of Is/Ic.
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Figure 9. Experimental data showing the spatial impulse response of the local
winner-take-all circuit, for values of Is/Ic ranging over a factor of 12.7. Wider
inhibitory responses correspond to larger ratios. For clarity, the plots are vertically
displaced in 0.25 volt increments.



CONCLUSIONS

The circuits described in this paper use the full analog nature of MOS devices to
realize an interesting class of neural computations efficiently. The circuits exploit
the physics of the medium in many ways. The winner-take-all circuit uses a single
wire to compute and communicate inhibition for the entire circuit. Transistor T1k

in the winner-take-all circuit uses two physical phenomena in its computation: its
exponential current function encodes the logarithm of the input, and the finite
conductance of the transistor defines the losing output response. As evolution
exploits all the physical properties of neural devices to optimize system performance,
designers of synthetic neural systems should strive to harness the full potential of
the physics of their media.

Acknowledgments

John Platt, John Wyatt, David Feinstein, Mark Bell, and Dave Gillespie provided
mathematical insights in the analysis of the circuit. Lyn Dupré proofread the docu-
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