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Abstract

This paper reviews many recent analog silicon im-
plementations of computational models of neural audi-
tory processing. These implementations are based on
physiological and psychophysical knowledge about bio-
logical auditory systems.

1 Introduction

The questions “How do we hear?” and “How can we
improve artificial hearing systems?” are rarely asked
by the same researcher. Why is research that holisti-
cally addresses hearing systems so rare? In the vision
community, a sizable group of researchers use both bi-
ological and artificial systems as motivations for their
research. Biological motion control and robotic mo-
tion control are also considered in a unified framework
by many researchers of movement.

The different computational environments of bio-
logical auditory systems and artificial hearing systems
are a key reason for the separation between the dis-
ciplines. Artificial hearing systems are usually spec-
ified as sampled digital algorithms, and are usually
implemented as programs on a small number of fast
serial digital computers. The nature of the computing
hardware has affected both the form and the content
of algorithms. For example, both serial and shared-
memory parallel digital computing architectures in-
sure access to all memory locations in the system, and
reward frequent accesses to the same memory loca-
tion. Efficient algorithms in this architecture exploit
these facts.

Likewise, the algorithms that are central to biologi-
cal auditory processing also exploit the computational
architecture of the brain. The cochlea, the sense or-
gan of hearing, uses both electrical and micromechan-
ical techniques to implement the first stage of audi-
tory signal processing. Later processing stages exploit
the computational properties of axons, dendrites, and
synapses to efficiently perform non-linear time-domain

processing of auditory signals. The algorithms are ro-
bust to the noisy nature of neural computation, and
can be efficiently wired in two-dimensional planes and
three-dimensional spaces.

Both artificial and biological auditory algorithms
have evolved in harmony with their primary imple-
mentation medium. It is not surprising that imple-
menting an algorithm from one system in the compu-
tational medium of the other system would be possible
but often impractical. For example, a discrete Fourier
transform (DFT) could be directly implemented with
biological neurons, by forming bistable storage ele-
ments and logic gates from small groups of neurons,
and then proceeding according to conventional logic
design. A clever neural designer could use the three-
dimensional wiring space of the brain to offset the
slower response time of biological neurons, and lever-
age nonlinear properties of dendritic trees to perform
fast reliable logic. But to our knowledge there are
no DFT processors in the brain; the computational
properties of the nervous system favor implementing
algorithms radically different from those of the digital
signal processing tradition.

Likewise, several researchers over the previous
decade have implemented computational models of bi-
ological auditory processing, with the goal of incorpo-
rating these models into a speech recognition system
[9] [1]. These projects have shown the promise of the
biological approach, sometimes showing clear perfor-
mance advantages over traditional methods [15]. How-
ever, these algorithms are very computationally costly
if run on serial digital computers.

Analog integrated circuit technology is a computa-
tional medium that shares many of the strengths and
weaknesses of neural circuitry [14]. Several research
groups have combined analog integrated circuit tech-
nology and theories of biological audition, to create
silicon microsystems that efficiently implement com-
putational models of biological auditory processing.
Some of these systems compute early representations
of biological audition [10] [13] [3] [6] [7] [8] [12] [18];
other systems attempt to perform a particular task,



such as auditory localization [2] [5] or pitch percep-
tion [4].

The original publications of many of these systems
are in the literature of neural networks and circuit
design. In this article, I review these systems from a
signal processing perspective.

2 Peripheral Processing

Auditory signal processing begins in the cochlea,
the sense organ of hearing. The cochlea acts as a
transducer, converting acoustic energy into the first
neural representation of audition. The auditory nerve
carries this representation to the brainstem; the nerve
contains approximately 50,000 fibers. [16] includes a
review of the structure and function of the cochlea.

Sound processing begins in the outer and middle
ear, where the resonant properties of the ear canal
and outer ear gently shape the spectrum of the sound
signal. The bones of the middle ear couple the acoustic
signal into the cochlea; these bones also implement a
gain control mechanism that attenuates high-intensity
sounds. This mechanism is under neural control.

Both mechanical and electrical processing occur in
the cochlea. Sound energy is coupled into a mechan-
ical traveling-wave structure, the basilar membrane,
that converts time-domain information into spatially
encoded information by spreading out signals in space
according to their time scale (or frequency). Over
much of its length, the velocity of propagation along
the basilar membrane decreases exponentially with
distance. The structure also contains active electrome-
chanical elements; outer hair cells have motile proper-
ties, acting to reduce the damping of the passive basi-
lar membrane and thus allowing weaker signals to be
heard. Axons from higher brain centers innervate the
outer hair cells; these centers may dynamically vary
the local damping of the cochlea, providing frequency-
specific automatic gain control.

Electrical signal processing in the cochlea occurs
during the sensing of the mechanical motion of the
basilar membrane. Inner hair cells occur at regu-
lar intervals along the basilar membrane, and convert
basilar-membrane vibration into a graded electrical
signal. Inner hair cells half-wave rectify the mechan-
ical signal, responding to motion in only one direc-
tion. Inner hair cells primarily respond to the veloc-
ity of basilar-membrane motion, implicitly computing
the time derivative of basilar-membrane displacement.
Inner hair cells also compress the mechanical signal
nonlinearly, reducing a large range of input sound in-
tensities to a manageable excursion of signal level.

Spiral-ganglion neurons connect to each inner hair
cell, and produce fixed-width, fixed-height pulses in
response to inner-hair-cell electrical activity. The
synaptic connection between the inner hair cell and
the spiral-ganglion neuron may implement a stage of
automatic gain control, exploiting the dynamics of
synaptic-transmitter release. Auditory-nerve fibers
are axons from spiral-ganglion neurons; these fibers
present a neural representation of audition to the
brain.

3 Silicon Cochleas

The first integrated circuit model of peripheral pro-
cessing focused exclusively on the mechanical pro-
cessing of the cochlea [10] [11]. This circuit is a
one-dimensional physical model of the traveling-wave
structure formed by the basilar membrane; the circuit
also models the effect of the outer haircells on basilar
membrane motion. A cascade of second-order sections
with exponentially scaled time constants implement
this model of basilar membrane motion. An analog,
continuous-time circuit implementation of the model
computes the pressure at selected discrete points along
the basilar membrane in real time.

From a signal processing perspective, the silicon
cochlea is a bank of low-pass filters; the response of
each filter features a resonant peak and a sharp cut-
off. The filter input and outputs are continuous-time
voltage signals. The resonant frequencies of the out-
put taps are exponentially spaced over several orders
of magnitude. The delay through the silicon cochleas
increases exponentially down the structure; the cas-
cade structure enforces a monotonic increase of filter
delay.

This cochlea circuit has been used in a complete
model of the auditory periphery [3]. In this chip, each
silicon cochlea output connects to a circuit that mod-
els the signal processing that occurs during inner hair
cell transduction. The output from this circuit is a
unidirectional current; this output connects to a cir-
cuit that models spike generation of the spiral ganglion
cells. This circuit produces fixed-width, fixed-height
spikes; these spikes are the the final output of the chip.

From a signal processing perspective, the inner hair
cell circuit performs several operations. The circuit
acts as a time differentiator; this action combines with
the cochlea’s resonant lowpass response to produce an
asymmetric bandpass response. In addition, the cir-
cuit acts as a half-wave rectifier; the unidirectional
current output produces zero current during half the



input waveform cycle. Finally, the circuit nonlinearly
compresses the signal.

The spiral ganglion circuit integrates the input cur-
rent signal until a threshold is reached. At this point
a fixed-width, fixed-height spike is produced, and the
integration variable is reset. Circuit noise adds a ran-
dom offset to the integration process.

As a result, the position of each spike statistically
encodes the shape of the input waveform. If many
spiral ganglion circuits are fed the same input current
signal, an average of the spiking outputs would repro-
duce the shape of the input signal. In addition, the
mean rate of spikes over a period of time is a measure
of the amplitude of the input current waveform.

Alternative silicon models of peripheral processing
have been reported by several research groups [18] [8].
One published effort describes the implementation of a
linear model of cochlear mechanics that extends eas-
ily to nonlinear modeling [18]. In this novel circuit,
traveling waves propagate through a one-dimensional
transmission line, implemented with a resistive net-
work constrained by scaled impedances.

Two recent improvements to the inner hair cell and
spiral ganglion cell circuits also have been reported.
Both improvements aim to model the dynamic adap-
tation that occurs in the transduction process. One
project is a detailed circuit model of current flow in
an inner hair cell [8]; the other project is a simple
model of dynamic adaptation during spike generation
in spiral ganglion neurons [7].

4 Using the Models

Frequency-domain and time-domain issues are both
important in systems that use a silicon model of
the auditory periphery. Figure 1 shows a frequency-
domain characterization of silicon auditory-nerve
fiber. This data was taken by presenting sinusoidal
signals at different frequencies and amplitudes as
input, and noting the average firing rate from a
spiking output [3]. Note that the filter bandwidth
asymmetrically increases at higher amplitudes; the
high-frequency filter cutoff remains fairly stationary,
but the low-frequency filter cutoff shifts dramatically
downward above 20 dB.

The wide bandwidth of silicon auditory nerve fibers
at moderate intensities allows cycle-by-cycle timing in-
formation to be accurately preserved in the timing of
individual spikes, as shown in Figure 2. This data
was taken from a peripheral chip that modeled short-
term adaptation [7]; this adaptation enhances changes
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Figure 1: Frequency response of a silicon audi-
tory nerve fiber. Y axis represents fiber activ-
ity (spikes/sec), X axis represents input frequency
(Hz), labels denote input amplitude (dB).

in the envelope of the sound signal. These temporal
properties are robust for high amplitude input signals.

The fundamental properties of silicon auditory
nerve fibers, shown in Figures 1 and 2, are also seen in
biological auditory nerve fibers. Unfortunately, these
circuit models fall short of biological performance in
several other functional aspects.

A major shortcoming of the silicon peripheral
model is limited dynamic range; this nonlinear aspects
of Figure 1 is a direct result of limited dynamic range.
Biological auditory nerve fibers, however, show very
similar nonlinearity; both silicon and biological fibers
encode about 30dB of intensity with mean spike rate,
although temporal encoding in both representations
continues at high intensity. Why is the limited dy-
namic range of the silicon model a deficit?

In the biological system, the spiking spiral ganglion
neuron is the source of the limited dynamic range;
the mechanical motion of the basilar membrane has a
much wider dynamic range. As a result, each inner
hair cell connects to about ten spiral ganglion neu-
rons. Although most of these ten neurons are sensi-
tive at low sound intensities and saturate at moder-
ate intensities, a few are insensitive at low intensities,
and encode sound intensity through mean spike rate
at medium sound intensities. In this way, the limited
dynamic range of spiral ganglion neurons is overcome.

In the silicon system, however, the silicon cochlea
circuit and the inner-hair-cell circuit are the sources
of limited dynamic range; the silicon cochlea circuit
saturates at moderate sound intensities, and the ca-



Figure 2: Temporal response of silicon auditory
nerve fiber to a 1 kHz, 20 ms tone burst. Top
trace shows tone burst input, middle trace shows a
sample response from a fiber, bottom trace shows
averaged output of 64 responses to tone bursts.

pability of inner-hair-cell circuit to sense small signals
is also limited. These two constraints result in the
30dB dynamic range of the silicon periphery model.
Expanding the dynamic range of these circuits is an
important research issue.

Is the limited dynamic range of silicon cochleas a
flaw that prevents their use as a component in larger
auditory systems? Although the mean-rate encoding
of sound intensity has a 30dB dynamic range, shown
by the low-frequency cutoff in Figure 1, the high-
frequency cutoff in Figure 1, as well as the tempo-
ral coding of Figure 2, are features with a dynamic
range of 60dB. Biological models that primarily rely
on these features of cochlear representation are well
suited to analog VLSI implementation using present
silicon cochleas.

Fortunately, many biological models implicitly as-
sume a low dynamic range of mean-rate encoding in
the entire auditory nerve. The importance of mean
rate encoding in biological audition is a controversial
issue in auditory neuroscience. Many theorists be-
lieve the temporal encoding shown in Figure 2 is of
primary importance in auditory processing, assigning
mean-rate encoding a secondary role. These theorists
note that the mean firing rate of most auditory fibers
are saturated for loud sounds, leaving a small number
of fibers to encode the sound. This fact is counterin-
tuitive with practical experience and psychophysical
experiments: louder sounds are easier to locate and
understand than softer sounds [1].

These theorists have developed models of auditory
processing that do not require a large dynamic range of
mean-rate encoding. These models have inspired most
of the integrated circuits that use silicon cochleas as

components. As the dynamic range of silicon cochleas
improves, silicon models of auditory theories that re-
quire mean-rate encoding with a large dynamic range
will also become practical.

5 Correlation Models

Temporal correlation of spike patterns from audi-
tory nerve fibers is a common theme in models of
higher function in biological audition. This process-
ing method does not require a large dynamic range of
sound encoding, and is realizable with biological neu-
rons; implementation of these algorithms typically re-
quires only time-delay elements and spike-coincidence
circuits.

General correlation algorithms often expand the
one-dimensional cochlear representation into a two-
dimensional representation. In the new representa-
tion, one axis represents cochlear place, whereas the
other axis represents correlation time delay. This two-
dimensional representation directly encodes an aspect
of the auditory signal, by extracting information from
the cycle-by-cycle time structure of the cochlear rep-
resentation.

Computing the running autocorrelation function
for the cochlear representation, for many linearly-
spaced correlation time delays, produces a two-
dimensional correlation representation that encodes
periodicity pitch information [9]. Computing the run-
ning cross-correlation function of the left and right
cochlear representations, for many linearly-spaced cor-
relation time delays, produces a two-dimensional cor-
relation representation that encodes auditory localiza-
tion information [16]. The cross-correlation of two
cochlear representations, without any explicit time
delays, also produces a two-dimensional representa-
tion that encodes auditory localization information
[17]; this representation uses the implicit time delay of
traveling-wave propagation on the basilar membrane
of each cochlea.

These representations easily map to analog VLSI
implementation, using coincidence circuits and monos-
table delay circuits to implement the correlation
primitives, and inhibitory circuits to process the fi-
nal representation. All three representations have
been successfully implemented in analog VLSI. A sil-
icon model of pitch perception [4] generates a two-
dimensional running autocorrelation function, and es-
timates pitch from this representation using a simple
algorithm. A silicon model of azimuthal auditory lo-
calization [2] generates the Jeffress two-dimensional
cross-correlation function, and estimates interaural



time delay from this representation using a simple al-
gorithm. These single-chip systems each contain over
100,000 transistors.

These two systems estimate properties of auditory
signals using simple algorithms on a single chip, and
output only the estimate, not the two-dimensional
correlation representation. In contrast, a different
silicon model of binaural hearing [13] generates a
two-dimensional cross-correlation function, using im-
plicit cochlear delays, and outputs this two dimen-
sional representation for display on a video moni-
tor. Another silicon system generates and displays a
two-dimensional auto-correlation function, using CCD
technology [12].

Other auditory algorithms use temporal correla-
tion to compute new one-dimensional representations
of audition. Several algorithms use temporal cor-
relation for spectral enhancement, transforming the
nonlinear frequency representation of Figure 1 into
an amplitude-independent spectral representation [1].
A spectral enhancement algorithm of this nature has
been recently implemented in analog VLSI [6].
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