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Chapter 3

Circuit Models of Nonlinear Inhibition

The silicon models of auditory localization and pitch perception, presented

in Chapters 4 and 5, use inhibitory processing to improve the selectivity of their

output representations. This chapter describes the inhibitory processing used in

these projects.

Two general types of inhibition mediate activity in neural systems:

subtractive inhibition, which sets a zero level for the computation, and

multiplicative (nonlinear) inhibition, which regulates the gain of the

computation. The circuit described in the chapter implements general nonlinear

inhibition in its extreme form, known as winner-take-all. In addition to

the projects in Chapters 4 and 5, the winner-take-all circuit has been used

successfully in a model of visual stereopsis (Mahowald and Delbruck, 1989).

The chapter also describes a modification to this global winner-take-all

circuit, which computes local nonlinear inhibition. The circuit allows multiple

winners in the network, and is well suited for use in systems that represent a

feature space topographically and that process several features in parallel. The

research in this chapter was done in collaboration with Sylvie Ryckebusch, M. A.

Mahowald, and Carver Mead; parts of this chapter were originally published in

(Lazzaro et al., 1988).

3.1 The Winner-Take-All Circuit

Figure 3.1 is a schematic diagram of the winner-take-all circuit. Each neuron

receives a unidirectional current input Ik; the output voltages V1 . . . Vn represent

the results of the winner-take-all computation. A single wire, associated with

the potential Vc, computes the inhibition for the entire circuit; for an n-neuron



circuit, this wire is O(n) long. To compute the global inhibition, each neuron k

contributes a current onto this common wire, using transistor T2k . To apply this

global inhibition locally, each neuron responds to the common wire voltage Vc,

using transistor T1k . This computation is continuous in time; no clocks are used.

The circuit exhibits no hysteresis, and operates with a time constant related

to the size of the largest input. The output representation of the circuit is not

binary; the winning output encodes the logarithm of its associated input.

A static and dynamic analysis of the two-neuron circuit illustrates these

properties. Figure 3.2 shows a schematic diagram of a two-neuron winner-take-

all circuit. To understand the behavior of the circuit, we first consider the input

condition I1 = I2 ≡ Im. Transistors T11 and T12 have identical potentials at

gate and source, and are both sinking Im; thus, the drain potentials V1 and V2

must be equal. Transistors T21 and T22 have identical source, drain, and gate

potentials, and therefore must sink the identical current Ic1 = Ic2 = Ic/2. In

the subthreshold region of operation, the equation Im = Io exp(Vc/Vo) describes

transistors T11 and T12 , where Io is a fabrication parameter, and Vo = kT/qκ.

Likewise, the equation Ic/2 = Io exp((Vm − Vc)/Vo), where Vm ≡ V1 = V2,

describes transistors T21 and T22 . Solving for Vm(Im, Ic) yields

Vm = Vo ln(
Im

Io
) + Vo ln(

Ic

2Io
). (3.1)

Thus, for equal input currents, the circuit produces equal output voltages; this

behavior is desirable for a winner-take-all circuit. In addition, the output voltage

Vm logarithmically encodes the magnitude of the input current Im.

The input condition I1 = Im + δi, I2 = Im illustrates the inhibitory

action of the circuit. Transistor T11 must sink δi more current than in the

previous example; as a result, the gate voltage of T11 rises. Transistors T11 and
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Figure 3.1. Schematic diagram of the winner-take-all circuit. Each neuron receives a

unidirectional current input Ik; the output voltages V1 . . . Vn represent the result of the

winner-take-all computation. If Ik = max(I1 . . . In), then Vk is a logarithmic function of

Ik; if Ij # Ik, then Vj ≈ 0.
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Figure 3.2. Schematic diagram of a two-neuron winner-take-all circuit.



T12 share a common gate, however; thus, T12 must also sink Im + δi. But only

Im is present at the drain of T12 . To compensate, the drain voltage of T12 , V2,

must decrease. For small δis, the Early effect decreases the current through T12 ,

decreasing V2 linearly with δi. For large δis, T12 must leave saturation, driving

V2 to approximately 0 V. As desired, the output associated with the smaller

input diminishes. For large δis, Ic2 ≈ 0, and Ic1 ≈ Ic. The equation Im + δi =

Io exp(Vc/Vo) describes transistor T11 , and the equation Ic = Io exp((V1 − Vc)/Vo)

describes transistor T21 . Solving for V1 yields

V1 = Vo ln(
Im + δi

Io
) + Vo ln(

Ic

Io
). (3.2)

The winning output encodes the logarithm of the associated input. The

symmetrical circuit topology ensures similar behavior for increases in I2 relative

to I1.

Equation 3.2 predicts the winning response of the circuit; a more complex

expression, derived in Appendix 3A, predicts the losing and crossover response of

the circuit. Figure 3.3 is a plot of this analysis, fit to experimental data. Figure

3.4 shows the wide dynamic range and logarithmic properties of the circuit; the

experiment in Figure 3.3 is repeated for several values of I2, ranging over four

orders of magnitude.

The conductance of transistors T11 and T12 determines the losing response of

the circuit. The Early voltage, Ve, is a measure of the conductance of a saturated

MOS transistor. The expression

Ve = L
∂Vd

∂L
(3.3)

defines the Early voltage, where Vd is the drain potential of a transistor, and

L is the channel length of a transistor. Thus, the width of the losing response
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Figure 3.3. Experimental data (circles) and theoretical statements (solid lines) for a two-

neuron winner-take-all circuit. I1, the input current of the first neuron, is swept about the

value of I2, the input current of the second neuron; neuron voltage outputs V1 and V2 are

plotted versus normalized input current.
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Figure 3.4. The experiment of Figure 3.3 is repeated for several values of I2; experimental

data of output voltage response are plotted versus absolute input current on a log scale. The

output voltage V1 = V2 is highlighted with a circle for each experiment. The dashed line is a

theoretical expression confirming logarithmic behavior over four orders of magnitude (Equation

3.1).



of the circuit depends on the channel length of transistors T11 and T12 . Figure

3.3 shows data for a circuit where the channel length of transistors T11 and T12

is 13.5 µm. Figure 3.5 shows data for a circuit with a wider losing response; in

this circuit, the channel length for transistors T11 and T12 is 3 µm, the smallest

allowable in the fabrication technology used.

Increasing the channel length of transistors T11 and T12 narrows the losing

response of the circuit; alternatively, circuit modification also can narrow the

losing response. The circuit shown in Figure 3.6 approximately halves the width

of the original losing response, through source degeneration of transistors T11

and T12 by the added diode-connected transistors T31 and T32 . Figure 3.7 shows

experimental data for this modified circuit.

3.2 Time Response of the Winner-Take-All Circuit

A good winner-take-all circuit should be stable, and should not exhibit

damped oscillations (ringing) in response to input changes. This section explores

these dynamic properties of our winner-take-all circuit, and predicts the temporal

response of the circuit. Figure 3.8 shows the two-neuron winner-take-all circuit,

with capacitances added to model dynamic behavior.

Appendix 3B shows a small-signal analysis of this circuit. This analysis

shows that the circuit is stable and does not ring if Ic > 4I(Cc/C), where

I1 ≈ I2 ≈ I. Figure 3.9 compares this bound with experimental data.

If Ic > 4I(Cc/C), the circuit exhibits first-order behavior. The time constant

CVo/I sets the dynamics of the winning neuron, where Vo = kT/qκ ≈ 40 mV.

The time constant CVe/I sets the dynamics of the losing neuron, where Ve ≈

50 V. Figure 3.10 compares these predictions with experimental data, for several

variants of the winner-take-all circuit.
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Figure 3.5. Experimental data (circles) and theoretical statements (solid lines) for a two-

neuron winner-take-all circuit with a channel length for transistors T11 and T12 of 3 µm. The

dotted lines show the losing response for the circuit used in Figure 3.3, which has a channel

length for transistors T11 and T12 of 13.5 µm.
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Figure 3.6. Schematic diagram of a two-neuron winner-take-all circuit, modified to produce a

narrower losing response.
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Figure 3.7. Experimental data (circles) and theoretical statements (solid lines) for a two-

neuron winner-take-all circuit, modified to produce a narrower losing response. The dotted

lines show losing response for the circuit used in Figure 3.4.
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Figure 3.8. Schematic diagram of a two-neuron winner-take-all circuit, with capacitances

added for dynamic analysis. C is a large MOS capacitor added to each neuron for smoothing;

Cc models the parasitic capacitance contributed by the gates of T11 and T12, the drains of T21

and T22, and the interconnect.
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Figure 3.9. Experimental data (circles) and theoretical statements (solid line) for a two-

neuron winner-take-all circuit, showing the smallest Ic, for a given I, necessary for a first-order

response to a small-signal step input.
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Figure 3.10. Experimental data (symbols) and theoretical statements (solid lines) for a two-

neuron winner-take-all circuit, showing the time constant of the first-order response to a small-

signal step input. The winning response (filled circles) and losing response (triangles) of a

winner-take-all circuit with the static response of Figure 3.3 are shown; the time constants

differ by several orders of magnitude. Losing responses for winner-take-all circuits with the

static responses shown in Figure 3.5 (squares) and in Figure 3.7 (open circles) are also shown,

demonstrating the effect of the width of static response on dynamic behavior.



3.3 The Local Nonlinear Inhibition Circuit

The winner-take-all circuit in Figure 3.1, as previously explained, locates the

largest input to the circuit. Figure 3.11 shows this behavior. Figure 3.11(a) is

the spatial input to a winner-take-all circuit with 16 neurons, with input 8 much

higher than all other inputs. Figure 3.11(b) shows the circuit response to this

input; only neuron 8 has significant response.

Certain applications require a gentler form of nonlinear inhibition.

Sometimes, a circuit that can represent multiple intensity scales is necessary.

Without circuit modification, the winner-take-all circuit in Figure 3.1 can

perform this task. Appendix 3C explains this mode of operation.

Other applications require a local winner-take-all computation, with each

winner having influence over only a limited spatial area. Figure 3.11(c) shows

the desired computation. As in Figure 3.11(b), neuron 8 has the largest response

in the circuit. However, neuron 8 suppresses the output of only nearby neurons;

neurons far from neuron 8 have significant responses, encoding their input

signals.

Figure 3.12 shows a circuit that computes the local winner-take-all function.

The circuit is identical to the original winner-take-all circuit, except that each

neuron connects to its nearest neighbors with a nonlinear resistor circuit (Mead,

1989). Each resistor conducts a current Ir in response to a voltage ∆V across it,

where

Ir = Is tanh(∆V/(2Vo)). (3.4)

Is, the saturating current of the resistor, is a controllable parameter. The current

source Ic, present in the original winner-take-all circuit, is distributed between

the resistors in the local winner-take-all circuit.
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Figure 3.11. Comparison of idealized winner-take-all spatial response and the desired local

winner-take-all response. The horizontal axis of each plot represents spatial position in a 16-

neuron network. a. The plot shows a spatial impulse function, used as input to compare

the two concepts. The vertical axis shows the input current to each neuron, with I8 ! Ik "=8.

b. The plot shows the winner-take-all response. c. The plot shows the local winner-take-all

response.
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Figure 3.12. Schematic diagram of a section of the local winner-take-all circuit. Each neuron

i receives a unidirectional current input Ii; the output voltages Vi represent the result of the

local winner-take-all computation.



To understand the operation of the local winner-take-all circuit, we consider

the circuit response to a spatial impulse, defined as Ik % I, where I ≡ Ii"=k.

Ik % Ik−1 and Ik % Ik+1, so Vck is much larger than Vck−1 and Vck+1 , and

the resistor circuits connecting neuron k with neuron k − 1 and neuron k + 1

saturate. Each resistor sinks Is current when saturated; transistor T2k thus

conducts 2Is + Ic current. In the subthreshold region of operation, the equation

Ik = Io exp(Vck/Vo) describes transistor T1k , and the equation 2Is + Ic =

Io exp((Vk − Vck)/Vo) describes transistor T2k . Solving for Vk yields

Vk = Vo ln((2Is + Ic)/Io) + Vo ln(Ik/Io). (3.5)

As in the original winner-take-all circuit, the output of a winning neuron encodes

the logarithm of that neuron’s associated input.

As mentioned, the resistor circuit connecting neuron k with neuron k−1 sinks

Is current. The current sources Ic associated with neurons k − 1, k − 2, . . . must

supply this current. If the current source Ic for neuron k − 1 supplies part of this

current, then the transistor T2k−1 carries no current, and the neuron output Vk−1

approaches zero. Similar reasoning applies to neurons k + 1, k + 2, . . . . In this

way, a winning neuron inhibits its neighboring neurons.

This inhibitory action does not extend throughout the network. Neuron k

needs only Is current from neurons k − 1, k − 2, . . . . Thus, neurons sufficiently

distant from neuron k maintain the service of their current source Ic, and the

outputs of these distant neurons can be active. Since, for a spatial impulse, all

neurons k − 1, k − 2, . . . have an equal input current I, all distant neurons have

the equal output

Vi#k = Vo ln(Ic/Io) + Vo ln(I/Io). (3.6)

Similar reasoning applies for neurons k + 1, k + 2, . . . .



The relative values of Is and Ic determine the spatial extent of the inhibitory

action. Figure 3.13 shows the spatial impulse response of the local winner-take-

all circuit, for different settings of Is/Ic.

3.4 Discussion

The circuits described in this chapter use the full analog nature of MOS

devices to realize an interesting class of neural computations efficiently. The

circuits exploit the physics of the medium in many ways. The winner-take-all

circuit uses a single wire to compute and communicate inhibition for the entire

circuit. Transistor T1k in the winner-take-all circuit uses two physical phenomena

in its computation: its exponential current function encodes the logarithm of

the input, and the finite conductance of the transistor defines the losing output

response. As evolution exploits all the physical properties of neural devices to

optimize system performance, designers of synthetic neural systems should strive

to harness the full potential of the physics of their media.
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Figure 3.13. Experimental data showing the spatial impulse response of the local winner-

take-all circuit, for values of Is/Ic ranging over a factor of 12.7. Wider inhibitory responses

correspond to larger ratios. For clarity, the plots are vertically displaced in 0.25 V increments.



Appendix 3A

Static Response of the Winner-Take-All Circuit

Figure 3.3 compares data from the two-neuron winner-take-all circuit with a

closed-form theoretical statement describing the losing and crossover response of

the circuit. This appendix derives that theoretical statement.

Figure 3A.1 shows a small-signal circuit model of the two-neuron winner-

take-all circuit (Figure 3.2). For a particular operating point [I1, I2, Ic1, Ic2],

the model shows the effect of a small change in I1, denoted i1, on the circuit

voltages V1, V2, and Vc, indicated by the small-signal voltages v1, v2, and vc.

In this model, a linear resistor rij , in parallel with a linear dependent current

source, with a conductance gij , replaces each transistor Tij from Figure 3.2. For

a particular operating point in subthreshold, the small-signal parameters are

g11 = I1/Vo,

g12 = I2/Vo,

g21 = Ic1/Vo,

g22 = Ic2/Vo,

r11 = Ve/I1,

r12 = Ve/I2,

r21 = Ve/Ic1,

r22 = Ve/Ic2,
(3A.1)

where Ve, the Early voltage, is a measure of transistor resistance, and Vo =

kT/qκ. This small-signal model is a linear system, which we can solve

analytically using conventional techniques; applying the approximation Ve + Vo ≈

Ve to the solution yields the simplified equations

v1

i1
= (1/I1)(Vo + Ve(Ic2/Ic)),

v2

i1
= −Ve(1/I1)(Ic1/Ic).

(3A.2)
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Figure 3A.1. Small-signal model of the two-neuron winner-take-all circuit.



Note that both small-signal and large-signal quantities appear in Equation

3A.2. We can view the small-signal quantities as differential elements of large-

signal quantities; as a result, we can rewrite Equation 3A.2 as the pair of

nonlinear differential equations

dV1

dI1
= (1/I1)(Vo + Ve(Ic2/Ic)),

dV2

dI1
= −Ve(1/I1)(Ic1/Ic).

(3A.3)

Solving this pair of nonlinear differential equations yields a complete description

of circuit response. We begin by eliminating Ic1 and Ic2 from the equations.

Referring to Figure 3.2, the equations

Ic1 = Io exp((V1 − Vc)/Vo),

Ic2 = Io exp((V2 − Vc)/Vo)
(3A.4)

describe transistors T21 and T22 . From Kirchoff’s current law, we know that

Ic1 + Ic2 = Ic; substitution of Equation 3A.4 into this equation yields the

expression

Ic = Io exp((V1 − Vc)/Vo) + Io exp((V2 − Vc)/Vo). (3A.5)

Dividing Equation 3A.4 by Equation 3A.5 eliminates Vc, leaving, after

rearrangement,

Ic1/Ic =
1

1 + exp((V2 − V1)/Vo)
,

Ic2/Ic =
1

1 + exp((V1 − V2)/Vo)
.

(3A.6)



These expressions fit nicely into Equation 3A.3, eliminating Ic1 and Ic2, and

leaving a set of differential equations involving only V1, V2, and I1:

dV1

dI1
= (1/I1)(Vo + Ve(

1
1 + exp((V1 − V2)/Vo)

)), (A7a)

dV2

dI1
= −Ve(1/I1)(

1
1 + exp((V2 − V1)/Vo)

). (A7b)

Equation 3A.7a contains V2 only in the subexpression

1
1 + exp((V1 − V2)/Vo)

; (3A.8a)

Equation 3A.7b contains V1 only in the subexpression

1
1 + exp((V2 − V1)/Vo)

. (3A.8b)

These subexpressions are both Fermi functions of the difference V1 − V2. For

V1 − V2 % Vo, the value of the subexpression 3A.8a is approximately 0, whereas

the value of the subexpression 3A.8b is approximately 1; for V2 − V1 % Vo,

the value of the subexpression 3A.8a is approximately 1, whereas the value of

the subexpression 3A.8b is approximately 0. In the region V1 ≈ V2, we can

assume that V1 and V2 are both changing with the same magnitude of slope

relative to I1. We can write this approximation as V1 − V2 ≈ 2(V1 − Vm) and

V2 − V1 ≈ 2(V2 − Vm), where, from the qualitative analysis in the chapter,

Vm ≡ V1 = V2 when I1 = I2 ≡ Im. We can use this approximation to decouple

Equations 3A.7a and 3A.7b, producing

dV1

dI1
= (1/I1)(Vo + Ve(

1
1 + exp(2(V1 − Vm)/Vo)

)),

dV2

dI1
= −Ve(1/I1)(

1
1 + exp(2(V2 − Vm)/Vo)

).

(3A.9)



We can solve these equations by straightforward integration, yielding, after

application of the approximation Ve + Vo ≈ Ve,

ln(I1/Im) =
(V1 − Vm)

Ve
+

1
2

ln(1 + (Vo/Ve) exp(2(V1 − Vm)/Vo)), (3A10a)

ln(I1/Im) =
(Vm − V2)

Ve
+

1
2
(Vo/Ve)(1 − exp(2(V2 − Vm)/Vo)). (3A10b)

Equation 3A.10a predicts the value of I1 for a given value of V1, whereas

Equation 3A.10b predicts the value of I1 for a given value of V2; in this

way, these equations are a closed-form approximation of circuit response.

To understand the behavior of the circuit, and to evaluate the effect of the

approximations V1 − V2 ≈ 2(V1 − Vm) and V2 − V1 ≈ 2(V2 − Vm), we can simplify

Equations 3A.10a and 3.A10b for three regions of interest: V1 ≈ V2 ≈ Vm,

V1 % Vm while V2 # Vm, and V1 # Vm while V2 % Vm.

First consider the condition V1 ≈ V2 ≈ Vm. In this case, |V1 − V2| → 0,

I1/Im → 1, and we can linearize the transcendental functions in Equations

3A.10a and 3A.10b, yielding the simpler relations

V1 = (Ve/2)((I1/Im) − 1)) + Vm,

V2 = (Ve/2)(1 − (I1/Im)) + Vm.
(3A.11)

In this region, V1 and V2 are a linear function of I1, with a slope of ±Ve/(2Im).

Next, consider the condition V1 % Vm while V2 # Vm, valid when I1 > Im. In

Equation 3A.10b, V2 # Vm implies exp(2(V2 − Vm)/Vo) → 0. This simplification

yields, after rearrangement,

V2 = Vo/2 + Vm − Ve ln(I1/Im). (3A.12)



If we use the notation I1 = Im + δi, as in the earlier qualitative analysis, we can

rewrite the subexpression ln(I1/Im) as ln(1 + (δi/Im)), which we can approximate

as δi/Im for small δi/Im, yielding the simplified result

V2 = Vo/2 + Vm − (Ve/Im)δi. (3A.13)

Thus, in this region, V2 decreases linearly with δi, with a slope of Ve/Im, which is

twice as large as in the previous condition.

We can similarly derive a simplified expression for V1, for the same condition

V1 % Vm while V2 # Vm. In Equation 3A.10a, V1 % Vm implies

(Vo/Ve) exp(2(V1 − Vm)/Vo) % 1. This approximation yields, after rearrangement,

V1 = Vo ln(I1/Im) + (Vo/2) ln(Ve/Vo) + Vm. (3A.14)

For this condition, as predicted by Equation 3.2 in the chapter, V1 is

a logarithmic function of I1. However, when does the approximation

(Vo/Ve) exp(2(V1 − Vm)/Vo) % 1 hold? This inequality, when rearranged, yields

the constraint

(V1 − Vm) % (Vo/2) ln(Ve/Vo). (3A.15)

Therefore, for a typical fabrication process, V1 − Vm must be much greater

than 0.15 V for Equation 3A.14 to hold! This error stems from the central

approximation V1 − V2 ≈ 2(V1 − Vm), which is valid for only V1 − V2 ≤ Vo.

Thus, for this region of operation, Equation 3.2 best predicts circuit behavior.

Finally, we consider the condition V1 # Vm while V2 % Vm, valid when

I1 < Im. In Equation 3A.10a, V1 # Vm implies (Vo/Ve) exp(2(V1 − Vm)/Vo) → 0.

This simplification yields, after rearrangement,

V1 = Vm + Ve ln(I1/Im). (3A.16)



If we use the notation I1 = Im − δi, as in the earlier analysis, we can rewrite the

subexpression ln(I1/Im) as ln(1 − (δi/Im)), which we can approximate as −δi/Im

for small |− δi/Im|, yielding the simplified result

V1 = Vm − (Ve/Im)δi. (3A.17)

Thus, in this region, V1 decreases linearly with δi, with a slope of Ve/Im. The

losing responses for V1 and V2 are thus identical.

We can similarly derive a simplified expression for V2, for the same condition

V1 # Vm while V2 % Vm. For Equation 3A.10b, V2 % Vm implies exp(2(V2 −

Vm)/Vo) % 1. This approximation yields, after rearrangement,

ln(I1/Im) = (Vm − V2)/Ve − (1/2)(Vo/Ve) exp(2(V2 − Vm)/Vo). (3A.18)

As V2 − Vm increases, the right side of this equation grows exponentially large

and negative, forcing I1 to grow closer and closer to zero; thus, V2 is constant

with I1. However, the poor approximation V2 − V1 ≈ 2(V2 − Vm) for V2 − V1 ≥ Vo

stunts this exponential growth. The qualitative analysis in the chapter predicts

this constant value accurately, as

V2 = Vo ln(
Im

Io
) + Vo ln(

Ic

Io
). (3A.19)

In summary, Equations 3A.10a and 3A.10b predict the losing and crossover

response of the circuit, whereas Equations 3.2 and 3A.19 predict the winning

response of the circuit. Figure 3.4 is a plot of this analysis, fitted to experimental

data. Figure 3A.2 expands the crossover region of Figure 3.4, showing

the crossover region between losing and winning analyses. The theoretical

predictions in Figure 3.5 and Figure 3.7 also use this analysis, with altered values

of Ve.
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Figure 3A.2. Experimental data (circles) and theoretical statements (solid lines) for a two-

neuron winner-take-all circuit in the crossover region.



Appendix 3B

Dynamic Response of the Winner-Take-All Circuit

In the chapter, we presented theoretical predictions of the time response of

the winner-take-all circuit; in Figure 3.9 and 3.10, we compared these predictions

with experimental data. In this appendix, we derive these theoretical predictions.

Figure 3.8 in the chapter shows a schematic diagram for a two-neuron

winner-take-all circuit, with capacitances added to model dynamic behavior.

Figure 3B.1 shows a small-signal circuit model for this circuit. For a particular

operating point [I1, I2, Ic1, Ic2], the model shows the effect of a small change in I1,

denoted by i1, on the circuit voltages V1, V2, and Vc, indicated by the small-signal

voltages v1, v2, and vc. In this model, a linear resistor rij , in parallel with a

linear dependent current source, with a conductance gij , replaces each transistor

Tij from Figure 3.2. For a particular operating point in subthreshold, the small-

signal parameters are

g11 = I1/Vo,

g12 = I2/Vo,

g21 = Ic1/Vo,

g22 = Ic2/Vo,

r11 = Ve/I1,

r12 = Ve/I2,

r21 = Ve/Ic1,

r22 = Ve/Ic2,
(3B.1)

where Ve, the Early voltage, is a measure of transistor resistance, and Vo =

kT/qκ. This small-signal circuit model is a linear system, which we can solve

analytically using conventional techniques. The resulting solution, unfortunately,

is a function of the unsolved large signal Ic1 and Ic2. However, for the input

conditions I2 = Im and I1 = Im + δi, we can reasonably make the approximations

Ic1 ≈ Ic and Ic2 ≈ 0 for relatively small δi, due to the exponential dependence of

T21 and T22 on V1 and V2. Using these approximations, we can express the small-

signal voltages v1 and v2 as linear functions of the small-signal input current i1,

as



v1

i1
= (

Vo

I1
)

((CcVo/Ic)s + 1)
(s/(a + b) + 1)(s/(a− b) + 1)

(3B.2)

and

v2

i1
= −(

Ve

I1
)

1
((CVe/I2)s + 1)(s/(a + b) + 1)(s/(a− b) + 1)

, (3B.3)

where

a =
I1

2CVe
+

Ic

2CcVo
(3B.4)

and

b =
√

(
I1

2CVe
)2 + (

Ic

2CcVo
)2 − (

IcI1

CCcV 2
o

). (3B.5)

If b is an imaginary number, the circuit has complex poles, and exhibits

undesirable ringing behavior. If Ic > 4I1(Cc/C), then b is real, and ringing

does not occur. Figure 3.9 in the chapter compares experimental data with this

inequality.

When b is real, the circuit exhibits first-order behavior. We can simplify

Equations 3B.2 and 3B.3, and show that the first-order time constant for V1 is

CVo/I, and the first-order time constant for V2 is CVe/I, where I1 ≈ I2 ≡

I. Figure 3.10 in the chapter compares experimental data with these time

constants.
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Figure 3B.1. Small-signal model of the two-neuron winner-take-all circuit, with capacitances

added to model dynamic behavior.



Appendix 3C

Representation of Multiple Intensity Scales

This appendix explains a regime of operation of the winner-take-all

circuit that represents multiple input intensity scales in the output, while still

functioning as an inhibitory circuit.

Consider an n-neuron winner-take-all circuit, with input currents I1 % I2 %

. . . % In. As shown in Equation 3.1 in the chapter, the output voltage V1 is

V1 = Vo ln(
I1

Io
) + Vo ln(

Ic

Io
), (3C.1)

while V2 . . . Vn are approximately zero. The output does not represent the input

ordering I2 % I3 % . . . % In; the largest input wins, and all other inputs

lose. We can operate the circuit in another regime, however, which allows inputs

I1 . . . Ik to win, and inputs Ik+1 . . . In to lose, where the magnitude of Ik is under

external control. Voltage outputs V1 . . . Vk−1 are now binary representations,

whereas Vk maintains a logarithmic encoding of the input current Ik.

In our previous analysis in the chapter, we used ideal current sources to

represent I1 . . . In. In Figure 3C.1, we replace these ideal sources with transistor

realizations. Transistors T31 . . . T3n , when operating in the subthreshold region,

realize ideal current sources if Vdd − Vk > 2Vo. Recall our input I1 % I2 % . . . %

In, and consider the effect of increasing the value of current source Ic. As shown

in Equation 3C.1, the neuron output V1 increases with Ic. For large Ic, transistor

T21 is no longer operating in the subthreshold region. In this case, the equation

Ic1 = k′(W/L)(V1 − Vc − VT )2 describes T21 , where W and L are the width and



length of T21 , and k′ and VT (the threshold voltage) are fabrication constants.

We can solve for V1 for this situation, as

V1 = Vo ln(
I1

Io
) +

√
Ic

k′(W/L)
+ VT . (3C.2)

If we increase Ic further, V1 continues to increase. For a sufficiently large Ic, V1

can approach Vdd. In this situation, T31 begins to turn off, and no longer acts

as an ideal current source supplying I1. In this case, we can model T21 as an

independent current source, supplying the current Is ≡ k′(W/L)(Vdd − Vc)2,

as shown in Figure 3C.2. To a first approximation, Figure 3C.2 shows a winner-

take-all circuit with (n − 1) neurons, with an effective control current of Ic − Is.

We can apply this technique to represent multiple input intensity scales.

Recall the input condition I1 % I2 % . . . % In, and the desired

behavior of outputs: V1 . . . Vk−1 to be approximately Vdd, Vk to maintain a

logarithmic encoding of the input current Ik, and all other output voltages

to be approximately 0. To produce this behavior, we simply increase Is, until

V1 . . . Vk−1 are approximately Vdd, but Vk < Vdd.
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Figure 3C.1. Winner-take-all circuit, with transistor realizations replacing ideal input current

sources.
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Figure 3C.2. Winner-take-all circuit, after modeling a saturated neuron with the independent

current source Is.


