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Chapter 1
ana + LOG = anaLOG

1.1 Introduction

The emergence of a very-large-scale-integration (VLSI) design style for analog
systems holds unique simulation challenges. In digital VLSI design, analog circuit
simulators are used for the electrical verification of small circuit sections with high
accuracy. The discrete nature of these systems permits the use of abstract switching
models for the analysis of macroscopic logic and timing behavior. This is indeed for-
tunate, as a circuit simulation of a VLSI system using a traditional analog simulator
is computationally impractical.

Analog VLSI design requires simulation tools that concentrate on the functional
performance of an analog system, as opposed to a fully accurate electrical character-
ization, to verify correct behavior more efficiently. Such a simulator requires models
that capture the functional essence of analog circuit primitives in a computationally
simple manner. In addition, the structure of an analog design needs to be exploited
by creating abstractions of circuit building blocks, rather than simulating circuits
with their primitive description. This approach ultimately results in a hierarchical
description of a large analog system, which can be simulated at different levels of
abstraction, trading off accuracy and efficiency. The higher-level descriptions may
be correct for only certain regions of operation, with range checking to indicate
improper usage. Finally, the numerical methods used to simulate the description
must reflect the unique requirements of functional simulation. By using these tech-
niques, a simulation tool tailored to the verification of analog VLSI systems may
be developed for a workstation environment.

The analog VLSI design style is directed toward system designers, as opposed
to integrated circuit engineers. A successful analog VLSI designer must develop an
intuition for parallel analog computation, as a digital VLSI system designer needs to
develop skills in digital logic and circuit design. The user interface of a traditional
circuit simulator, however, is directed toward an experienced electrical engineer,
being batch mode (with textual input and output), unforgiving to the novice user,
and isolated from other VLSI design tools. Clearly, the user interface of a analog
VLSI simulation tool needs to be made more sympathetic and educational to a
perspective designer from a nonengineering background.

A better simulation user interface portrays the metaphor of an electrical engi-
neering lab bench. Using a bit-mapped display and a pointing device, the user can
draw circuits in a schematic editing environment. As the circuit is being drawn,
however, it is also being simulated, because a circuit under construction on a lab
bench is always in operation. Symbolic multimeters and oscilloscope probes are
available for the display of the ongoing simulation. Schematic voltage and current
sources provide system input, with user control of the excitation, and graphical



indication of source overload. The functional simulator, rather than standing alone,
shares the lab bench with tools for documentation, integrated circuit mask design
and verification, and other simulators.

LOG, an interactive graphical environment capable of hosting tools for simu-
lation, documentation, and integrated circuit layout, has been developed by David
Gillespie at Caltech. This thesis describes an analog functional simulator, Ana,
which includes functional models for a standard cell library of analog computation
building blocks designed by Carver Mead. Ana, LOG, the standard cell library, and
a graphical layout editor form the basis of a design system used in the analog inte-
grated circuits course at Caltech. The remainder of this chapter is an introduction
to the LOG environment, and to the Ana simulator.

1.2 The LOG Environment

The LOG operating system provides a natural framework in which to manipu-
late systems describable as a list of interconnected objects with a static number of
ports. The system includes a schematic editor, using a bit-mapped graphics screen
and a pointing device, and an object-oriented interface mechanism for external pro-
grams. This mechanism allows full integration of tools for simulation, design, and
documentation into LOG without source-code access; it functions as a software bus
for a set of interrelated programs.

The user creates systems in LOG by graphically interconnecting objects, called
gates. Gates are not dynamically definable; they are selected from a predefined
catalog. Their definition can include an association with a tool; a gate thus can
possess type. Each port of a gate, called a pin, also can be typed. When the user
creates an instance of a gate, a node for each pin is created and is added to a global
node list. The node assumes the type of the associated pin. The user edits the data
structure by connecting pins together with wires; redundant nodes are eliminated
from the node list during editing. The pins of a gate always are cognizant of their
respective nodes. Type checking by LOG ensures nodes of different types can never
be merged; type casting is available for exceptions.

The LOG interface mechanism for external programs is based on message pass-
ing. A tool has an interest in gates and nodes of its type. LOG sends messages
to a tool concerning the definition, creation, manipulation, and deletion of these
structures. LOG also sends general messages to a tool, such as “send debugging
information about your tool.” A tool is given access to the entire LOG data struc-
ture while responding to a message, with the understanding that only tool-specific
sections may be modified. LOG also provides a procedure library to support data
structure manipulation and the user interface.

Simulators are tools that predict the transient behavior of a system. Whereas
most tools share only the LOG data structures, simulators share two dimensions
of time. Because simulation and editing should appear to be simultaneous to the
user, each simulator shares CPU time with other simulators and LOG. Multiple



simulators may be used together to predict the behavior of a mixed type system,;
LOG manages simulation time as a global resource.

A simulator can respond quickly to most messages, allowing LOG to maintain
a responsive graphical editing environment. Computationally intensive messages
specify a maximum response time constraint; a simulator polices itself. LOG adjusts
this time-slice according to user input activity, allowing transparent switches be-
tween a high-performance simulation environment and a crisp editing environment.
Timed messages have protocols concerning the noncompletion of the message.

The management of simulation time is more complex. LOG begins with simula-
tion time reset to zero; the user may also reset the system. During reset, a message
sent to each simulator requests initialization of the system state. LOG and the user
can request reset, but only simulators can advance simulation time and state. LOG
regulates the simulation through several messages.

The pass message asks a simulator to compute an advance of simulation time
and state for its system. The data structure may not have remained constant since
the last pass message, but all pertinent changes have been reported to the simulator.
A simulator cannot veto a data structure change or reset simulated time; it must
contend with a dynamic system. A simulator reports whether time and state were
successfully advanced as it returns from the pass message; an unsuccessful pass
either implies that more CPU time is needed for simulation, or that the present
data structure is not suitable for simulation.

A simulator advances the state of its own system; simulation time is shared by
all simulators and must be managed globally. LOG allows all simulators to attempt
advancing time; the smallest increase is accepted by LOG, while simulators bidding
larger steps are requested to simulate up to the accepted time step. The tstep
message informs a simulator of the status of its bid. After a uniform time advance,
the simulators update internal system state in lockstep.

1.3 An Overview of Ana

A central aspect of an ideal analog VLSI simulation environment is the simul-
taneous editing and simulation of a system. The LOG operating system provides
an excellent framework for this environment, offering a schematic editor with data
structures appropriate for simulators, a communication system that informs tools
of relevant system changes in an abstract manner, support for multitasking and
multiple simulators, and the global management of a graphical user interface. The
design of an analog simulation tool portraying the lab-bench metaphor in LOG
raises several challenging issues.

In LOG’s multitasking protocol, a tool must control its maximum response time
to a simulation message. Constructing the simulation algorithm as a collection of
distinct, computationally simple tasks is a method of response-time regulation. The
message response can be considered a finite-state machine, executing each task in



proper sequence until the allotted time has been exhausted, then saving the present
position for a future message receipt.

A LOG simulator must contend with preserving the state of an incrementally
changing system. In Ana, each pin of a gate has a small parasitic capacitance.
When a gate is created, the parasitic capacitors are initialized. During the course of
a simulation, these capacitors contain the complete state of the gate. When the data
structure is changed, Ana uses this redundant information to evolve faithfully the
state of the modified system from the original, presenting an illusion of continuous
simulation. System state also can be reset to preset values by the user.

Ana attempts simulation only if every pin of each gate of a system is connected
to some other pin, excepting measurement gates. A system of this nature is defined
as complete. As a result, minor changes can be made transparently, but simula-
tion stops during major editing, preserving system state and avoiding numerical
instability.

The lab-bench metaphor demands robust simulation, as nature always finds
the fixed point! The “soft” circuit modeling style of Ana promotes robustness.
All excitation sources have output impedance and overload limiting. A capacitive
path fully couples all pins of a gate to each other and to ground, and all active
outputs posses DC impedance. Power and ground, the sole “hard” signal sources,
are syntactically checked for shorts. Soft modeling allows a system to absorb abrupt
changes gracefully.

The mathematical modeling style of Ana also contributes to its stable character-
istics. All functions used in gate description are continuous with fully defined first
derivatives throughout their range. The numerical methods in Ana use symbolic
derivates, not finite differences. The avoidance of gross roundoff errors, and the use
of functions with defined derivates, both increase stability.

An adaptive implementation of backward Euler integration is used in Ana. A
full description and analysis of the method is given in Chapter 2 and Chapter 3.
The implementation offers robust performance, with medium accuracy and com-
putational simplicity. A noniterative equation solver, special methods for evolving
the state of a dynamic data structure, and adaptive relaxation of accuracy during
difficulty also aid convergence.

The responsiveness and flexibility of the LOG user interface must also extend to
simulation tools. Ana can simulate a screen-sized system with sufficient speed for
an interactive session. A hierarchical modeling system drives this performance; the
library contains concise models for many common circuits. The simple, adaptive
integration method also contributes to efficiency.

Equally important to user productivity is the leverage of the Ana user inter-
face. Visual simulation feedback allows the quick correction of schematic entry
errors; model parameters and system state can be changed with a single keystroke.
Schematic multimeters can be added to display results; the simulator easily inter-
faces to oscilloscope and plotting tools for graphical output. The pointing device



can become a status “probe” to scan the system quickly, and schematic wires can
“glow” in various colors to show state. Many gates have warning displays to relate
abnormal conditions; sources have “switches” to vary excitation. All these features
can be activated without stopping the simulation.



Chapter 2
The Mathematics Of Ana

2.1 Introduction

In the LOG data structure, a system is described as a list of nodes Ny,..., N,
and a list of gates G1,...,Gy. A gate has an arbitrary number of pins, p. Each pin
is connected to exactly one node. For a gate GG, with pins numbered 1,...,1,...,p,
the node of pin [ is given by the function Node(l). The current global simulation
time is defined as t.

Ana views this system as a lumped electrical circuit. There is a voltage potential
Vi between each node N; and a common reference. The behavior of a gate G}, is

defined as a set of functions Plk, e Plk7 e sz, where
AV Node(1 AV Nod
]le = Plk (VNOde(l)a SO VNode(p)7 C(l)te( ) 1 (;te(p) N

is the current out of Node(l) contributed by pin [ of gate Gy.

By Kirchoft’s current law, the sum of all the current out of a node must equal
zero. The system of differential equations

~ d d
Fi ‘/17-~->VTL7 Vrla"'aﬁ?t = Z Plk:O 1<i<n
dt dt
all Gy,
Node(l)=1

fully describes the original lumped-circuit system. Ana numerically solves these
equations to obtain simulation results.

2.2 Solving the System of Differential Equations

Ana first converts this system of differential equations into a system of difference
equations. The system variables V..., V,, are thus transformed from continuous
to discrete; V; is now defined at a specific time ¢, and is notated V;tz. Ana requires
its numerical methods to be highly robust, with medium accuracy and good effi-
ciency. It is shown in Chapter 3 that the backward Euler method [1] meets these
requirements. This method converts the differential equation

dav
— = f(V,t
)
into the difference equation
Vtz+At . Vtz

o =S (VR + A



where the timestep At is the distance between each discrete time value.

Using this method, the system of differential equations

. avy avy, .
Fl\V,....Vpy——, ..., —,t] =0 1<i<n
' ( ! ™ dt dt ) ==
is transformed into the system of difference equations
I (WZ+A1¢ VAt
ooy Voo )
Vltz+At _ Vltz V$2+At _ Vrfz
e ,t At)z() 1< <n.
At At = ==

It is simple and convenient to derive a new system F = F, where
Fy (Vi Vil VRS VETAL AL b 4 At) =0 1<i<n.

Ana solves this system of difference equations to simulate the electrical system.
When the simulation begins, t, = t,, and Vlt", ..., Vo are the initial conditions of
the former differential equation. Algorithms for setting initial conditions correctly,
and for choosing a suitable At throughout a simulation, are shown in Section 2.5.

2.3 Solving the System of Nonlinear Difference Equations

At time ¢, of a simulation, the present state sz, ..., V= is known. After an
appropriate At is chosen, Vf”At, cee VTfZJFAt are the only remaining unknown vari-
ables. F' becomes the system of nonlinear algebraic equations

Fi(v1,...,v,) = F (vl’fz+“, o v,fz+At) =0 1<i<n.

The Newton-Raphson method [2] can be used to transform this nonlinear algebraic
system into a linear one. Given an approximate solution v{’,...,v,’, the method

produces a better approximation ququl, . ,U}L”“, where v}’ th= v’ + ;. It requires
the existence of a good initial guess of the solution v{,...,v? ; Ana chooses UZO = ‘/;tz.

By expanding the system F' (v}’ + d1,...,v% + d,,) by Taylor’s theorem and keeping
only first-order terms, a system of of linear algebraic equations

OF;
81)1

oF;

Fi(v}”,...,v}f)+61 navn

=0 1<i<n

+...+90

w w

is produced. Solving this system yields d1,...,d,, and ultimately the improved
approximation v"f’“, . ,U}L”H. This process is iterated until a sufficiently close
approximation is achieved; later sections include an analysis of the convergence

properties of this method, and the establishment of a termination criterion.



2.4 Solving the System of Linear Equations

The n x n linear equation system produced by the Newton-Raphson method
is usually sparse, because typical electrical circuits are sparsely connected. Sparse
equation solution methods are more efficient than general techniques, but they are
more complex to implement. In addition, sparse methods are iterative in nature;
a robust implementation requires additional complexity. The current prototype of
Ana uses a general noniterative solution method, the method of division by leading
coefficients [2].

Using the notation a;;, = gf; b = —F; (v)’,...,v") the system of linear
w

equations F' can be rewritten as
ai101 + ...+ ajpdn, = b; 1< <n.

To solve for 41, ..., d,, each nonzero leading coefficient a;; is first normalized. The
equation with the former a;; of largest absolute magnitude, called the pivot equation,
is then subtracted from all others, reducing the n x n system to a (n — 1) x (n —
1) system. This procedure is repeated until a single equation in one unknown
remains. All §; can then be obtained by direct substitution. A division by zero
during calculation indicates a singular system.

2.5 Completing the Algorithm

The previous presentation leaves many details unspecified. The selection of
a proper At for the backward Euler method, the iteration termination criterion
for the Newton—-Raphson method, and the correct response to a singular system
by the linear equation solver are all unaddressed. In Ana, an adaptive control
system is used to resolve these issues and complete the simulation algorithm. In the
following discussion, all symbols in calligraphic type are user-accessible simulation
parameters.

A singular system of linear equations has no solution. A nonsingular system
of linear equations may not be numerically solvable, as a result of accumulated
roundoff error during calculation. If a system of equations cannot be solved, the
Boolean function singular is true.

The termination criterion for the Newton—Raphson method compares two suc-
cessive approximate solutions of the nonlinear system. A relative comparison must
be augmented by an absolute comparison to accommodate solutions of small mag-
nitude without roundoff error. Ana considers a system solved at the end of iteration
w, if for every 7, either the relative condition




or the absolute condition
v’ < A

is met, where R is the relative accuracy and A is the absolute accuracy. If this
condition is met, the Boolean function converged is true. If the initial guess of the
solution v?, . ,vg is not sufficiently close to the actual solution, Newton—Raphson
may diverge. M, the maximum number of iterations, is a system wvariable under
adaptive control. If the algorithm does not converge after M iterations, it probably

never converges. If this condition holds, the Boolean function toomany is true.

Once a solution has been obtained, the error of the backward Euler method can
be checked. The larger the voltage change for a timestep, the larger the approxi-

mation error. Ana accepts a solution Vf”At, cee Vﬁ”m if for every i,

to+At t
Viet = = vl <G

where C is the maximum permissible voltage change for a timestep. If this condition
is false, but
At < S,

where S is the smallest reasonable timestep, Ana still accepts the solution. This
condition sacrifices accuracy for a robust simulation during difficult transitions; in
practice, it is almost always invoked immediately after a data-structure change. If
a solution is not accepted, the Boolean function toobig is true.

The choice of an improper timestep may result in a solution Vfﬁm, cee V,f”’m
that is physically impossible. Ana accepts a solution only if for all 4,

where £ and H are the lowest and highest plausible voltages respectively. If a
solution is rejected, the Boolean function overflow is true.

An appropriately small At ensures an accurate simulation. A At smaller than
necessary is inadvisable, as it needlessly increases computational cost. Q is the
range of efficient solutions. If for all ¢
o+ AL ts c
’Vz B Vz ’ < é?
the present At is inefficient, and in future simulation should be increased. The
Boolean function toosmall is true if the current timestep is suboptimal.

The adaptive algorithm uses the previous Boolean definitions to control the sim-
ulation and update the variables At and M. At the end of every iteration w, Boolean
conditions for accepting the present result and halting the simulation attempt are
checked. If these conditions are both false, another iteration is performed.

If the Boolean condition singular or toomany or overflow is true, the simulation
attempted has failed, due to an equation singularity, a nonconverging system, or a



physically impossible result. The timestep At is reduced by the timestep divisor D.
The simulation is halted, and a new attempt to simulate the system begins.

If the condition converged and not toobig is true, Newton—Raphson has con-
verged with a solution of desired accuracy, and the simulation result is accepted.
If toosmall is true, At is unnecessarily small, and is increased by a factor D. If At
grows arbitrarily large, the simulator becomes unresponsive to sudden excitation.
To prevent this condition, At is bounded by the maximum timestep 7. Convergence
was achieved in w iterations; if the next simulation attempt does not converge in
7 x w iterations, where Z is the iteration factor, an improper At was chosen. Thus
M is assigned the value 7 x w, and a new simulation attempt begins.

In many cases, Ana is used to find the DC fixed point of a system, and the
simulation accuracy is irrelevant. In this case, the same control system is used, but
toobig always returns false, and toosmall is always returns true.



Chapter 3
Properties of the Mathematics of Ana

3.1 Introduction

When choosing a numerical method for a particular application, robustness,
computational complexity, and accuracy are three major considerations. The per-
formance requirements of Ana, detailed in Chapter 1, clearly address these three is-
sues. A robust simulation algorithm is essential to portray the lab-bench metaphor.
In addition, computationally simple numerical methods are necessary for interactive
response. Finally, since Ana is a functional simulator, highly accurate results are
not needed. In this chapter, properties of the numerical methods used in Ana are
compared with these desired characteristics.

3.2 Evaluating the Stability of the Backward Euler Method

The behavior of a linear resistor R and capacitor C' connected in parallel can
be described by the differential equation
av 1
— =——V=-)\V
dt RC
where V is the voltage across the components. The analytical solution of this
equation is V' (t) = Voexp (—A (t — t,)), where t, and V,, are initial conditions.

To analyze the stability of a numerical method for solving differential equations
[1], it is interesting to compare its result for this problem with the correct solution
V(). Recall that the backward Euler method converts the differential equation

dav
— = f(V,t
=)
into the difference equation
Vtz+At . Vtz

N = f (VA + A

Applying this method to the test problem yields, after algebraic manipulation, the

ratio
Vtz—i—At 1

Vi 1+ AAt

In contrast, the analytic solution to this test problem produces the ratio

= X, (A\AL).

VitAat _exp(—A(t + At))
Vi:  exp(=\t)

= exp(—AAt) = X, (AAD).



Note that X,(0) = X, (0) and X,(00) = Xp(c0). In addition, the error function
E(A\At) = | X (AAL) — X, (AAL)| is bounded for all 0 < AA < oco. A numerical
method is called A-stable if its solution to the test problem has these desirable
properties. For an A-stable method, the choice of a timestep At affects only the
accuracy, not the stability, of the test-problem solution.

This test problem is relevant to circuit simulation for several reasons. A typical
analog system may have many RC' subcircuits. At a specific time in the simulation,
however, only a few of these subcircuits significantly affect system performance.
An A-stable method allows an appropriate At to be chosen to track the significant
subcircuits; a method that is not A-stable may require that a smaller timestep be
chosen simply to ensure robust operation. In addition, note that any nonlinear
differential equation

av
- t
may be approximated by the Taylor expansion
dav._ of af

Over a small interval (t,,t, + At), g—{; can be approximated by At, yielding

av

y AtV = Vo) + F (Vo to) .

The term F' (V,,t,) rarely affects stability. Therefore, the behavior of a numeri-
cal method on the test problem can indicate its stability when solving arbitrary
nonlinear differential equations.

3.3 Accuracy and Complexity of the Backward Euler Method

The definition of the backward Euler method may be rewritten as [1]
VERAL s Af (VAL L 4 At) = 0.
If the numerical method is exact, the function
D(t., At) =V (t, + At) — V(L) — Atf (V (. + At) , t, + Ab)

is equal to zero, where V(t) is the true solution of the differential equation. The
function D(t,, At), called the local truncation error, is a measure of the error of
a numerical method. Replacing V (¢, + At) in the definition of D(¢,, At) by the
Taylor series expansion

dV(t:) (A PV (t:)

V(t, + At) =V (t,) + At 7 5 72




yields the expression

(At)? d*V (t,)
2! dt?

Therefore, the local truncation error of the backward Euler method is O((At)?).
The order of the local truncation error indicates the size of At necessary to achieve
a certain accuracy, and thus is an indication of the computational complexity of
the numerical method. Most simple numerical methods of higher order than is the

backward Euler method are not A-stable, and therefore are unsuitable for use in
Ana.

D(t,, At) =

3.4 The Condition for Convergence of the Newton—Raphson Method

Given an approximate solution v" of the nonlinear algebraic equation f(v) =0,
the Newton—-Raphson method produces a better approximation

Uw—l—l — ¥ — f(vw)

as described Chapter 2. This iterative process continues until a sufficiently accurate
solution is obtained, as measured by the error function E(w) = |[v*T! — v%|. For
robust operation, each successive iteration must produce a smaller E(w). The
condition for convergence is shown below [2].

For the correct solution v¢, the equation v¢ = ¢(v°) clearly holds, if f (v¢) #
0. Subtracting this equation from the iteration equation v+ = ¢(v*) gives the
expression

o — 0 = () — ().
By the mean value theorem, the right side of the equation can be rewritten as
o) = (") = ( — ") (€") W< <w.
Substitution yields the expression
v — ot = (08 —0)g (£7).

The condition of convergence for iteration n — 1 is obtained by multiplying together
instances of this equation for 0 < w < n — 1, which produces, after algebraic
manipulation, the expression

v = (= e (e (€ o (7).
Note if |¢ (v)| < 1 throughout the range (v°,v¢), this equation can be rewritten as
n| —

v —U v—v|1Mm
‘c |c 0|n,



where m < 1. In this event, the error |v¢ — v"| — 0 as n — oo, and the process
converges.

This condition can be easily expressed in terms of the initial function f(v).
Recalling the definition of ¢,

Thus, for the convergence condition |¢ (v)| < 1 to be true in the neighborhood of
the initial guess v°, the inequality

F@O)f (O] < |f ()

must hold. Note that, if v¥ is sufficiently close to the correct solution v¢, f(v°) — 0

and the inequality is valid, if f/ (v) # 0. Thus, the practical condition for con-
vergence is the presence of a good initial guess v°. This analysis is invalid if f is
discontinuous, because the mean value theorem does not hold over the entire range
of the function.

3.5 The Rate of Convergence of the Newton—Raphson Method

The rate of convergence of an iterative algorithm is a measure of its computa-
tional cost as a function of solution accuracy. This measure is easily derived for the
Newton-Raphson method [3]. If the solution of the nonlinear algebraic equation
f(v) = 0is v, an approximate solution v* can be written as v¢+ €,. The iteration

equation
Uw+1 — Uw . f(vw)
f (o)
can therefore be rewritten as
e f(v + €w)
w—+1 w f/(vic n Gw) .

/
The Taylor series expansions of f and f around v are

/ 62 1
J(° 4+ €w) = ewf (vc)+?wf (V) + - --

/ /

f (4 ey) = f (v°) —i—ewf”(vc) R

Using these expansions, the expression

wf () + F1"(0F) + -
f’(vc) + wa// (UC) 4+ ...

Cw+l = €w —



is obtained, which after simplification yields

12

ewf (V) + & F (00) + - — ewf (V) — B (1) — -+
f’ (vc) + wa” (/UC) 4+ ..

Truncating higher-order terms gives the final approximation

Cw+l =

N TAG)
2f (v°)
The error in the approximate solution v" decreases quadratically with each itera-
tion, and thus the rate of convergence for Newton-Raphson method is second-order.
Methods that are of higher order than is Newton—Raphson typically have complex
iteration procedures that offset their faster rate of convergence.

3.6 Properties of the Method of Division by Leading Coefficients

The method of division by leading coefficients is used in Ana to solve systems
of linear algebraic equations. The stability and accuracy of this method are limited
only by the inexact nature of a binary real number representation. For typical Ana
systems of moderate size, these limitations are not significant.

The computational complexity of the method is derived easily. Recall from
Chapter 2 that the method reduces an m x m system

ai101 + ...+ aimOm = b; 1< <m.

to an (m — 1) x (m — 1) system by dividing each each equation by its leading
coefficient a;1, and then subtracting one equation from the others. This reduction
requires m? divisions and m(m — 1) subtractions. The reduction of a n x n system
of equations to a single equation thus requires

n—1
>om?= nn + 123(271 U o(n®)
m=1
divisions and
n—1 o _ _
m(m —1) n(n 1)6(2n 1) n(n2 1) _ o)
m=1

subtractions. Completing the solution by direct substitution requires

zn: m:n(n-l-l) :O(nz)

m=1 2



multiplications and

n-l n(n —
Z m= (21) = O(n2)
m=1

subtractions. Thus, the method is O(n?) in both multiplications and subtractions.
For sparse systems, there are more efficient methods for solving systems of linear
equations. For the prototype of Ana, the simplicity of the method of leading coef-
ficients is desirable; however, the final production version of Ana will use a more
efficient sparse method.



Chapter 4
Simulating a Changing System

4.1 Introduction

During the simulation of a system of gates G1,...,Gy and nodes Ny, ..., Ny,
the user may at any time alter the data structure, producing a new system with
gates G, . .. ,G;, and nodes Ni,...,N/,. When the data structure is changed, the
state of the new system must be evolved from the old, maintaining the illusion of
a continuous simulation. The techniques Ana uses to evolve system state are the
focus of this chapter.

The state of a system is fully expressed by the voltages Vi,...,V,, associated
with nodes Ni,...,N,. To aid the evolution of the system state during changes,
this information is redundantly present in the list of gates G'1, ..., G,. For a gate Gy,
with pins numbered 1,...,[,...,p, each pin [ is associated with a voltage v;. The
voltages v1,. .., v, are used as the state variables for all memory elements contained
in the gate Gy, because under normal circumstances, Vyyqe) = vi- After a data-
structure change, however, this may not be true. Re-establishing the condition

ViNode(1) = VI Vi, VG,

while maintaining the illusion of a continuous simulation is the main task of the
state-evolution algorithm.

LOG reports data-structure changes on an atomic level, as messages describing
the alteration of a single gate, node, or parameter. Parameter changes do not affect
the structure of the system state; simulation can continue immediately after their
receipt. Node and gate operations, however, fundamentally change the system.
Most screen-editing operations decompose into multiple node and gate messages,
all sent before LOG resumes simulation messages.

4.2 Evolving the System State

The algorithm for state evolution consists of two sections. The first section is
the response of Ana to each atomic transformation reported by LOG. The second
section operates after all atomic changes have made, and re-establishes the condition

ViNode(1) = VI Vi, VG,

for the new system. The first section is necessary to exchange information from the
old system to the new before the latter disappears.

The first section of the algorithm is a collection of state-transfer rules for atoms.
When a new node is created, its state V; is undefined. When a node N; is split into



two new nodes IN; and Ny, V; and Vj retain the value V;. When two nodes IV; and
N}, are combined into a single node N;, V; arbitrarily takes on the value V; or Vj,
preferring a defined state. The transfer rules for gates are similar. When a new
gate Gy, is created, the state of its pins vy, ..., v, is undefined. When a copy of a
gate is made, the copy keeps the state of the original gate.

The second section of the algorithm initializes all undefined nodes and pins.
First, all undefined nodes NN; are initialized to the defined state v; of an arbitrary
pin associated with the node. Then, all undefined pin voltages v; are initialized to
the state V; of the node associated with the pin, if defined. Finally, all remaining
undefined nodes and pins are set to the reference voltage.

The condition Vig,ge) = v; now holds in all situations, except the connection of
two defined pins to a single node. In this latter case, the simulation still is permitted
to begin. Each gate connected to the node looks to its own v; for state information,
and influences the new VitﬁAt for the node, effecting a weighted average of the
dissimilar v;’s. After the first timestep of simulation is completed, Viyge)y = v
again holds for the entire system.

This algorithm presents an intuitive evolution of state to the user. When a gate
is created and added to a circuit, it assumes the state of the appropriate nodes.
When a gate is removed from a circuit, it maintains its state. Subsystems can be
copied with state intact. After two pins with different states are connected to each
other, the simulation displays the resultant “fighting.” At the start of a simulation
session, the nodes of a system must “charge up” to a value, which is similar to
applying power to a circuit at a lab bench.

4.3 Criterion for Simulating a System

In circuit theory, it is easy to create systems that are overconstrained and there-
fore have no solution. When using circuit theory to analyze a physical system, over-
constrained systems indicate unrealistic component modeling. Future sections de-
tail the soft modeling style of Ana, which makes the creation of an overconstrained
system virtually impossible. Although the simulation of virtually any system is
possible with Ana, there are valid reasons not to simulate certain systems.

Generally speaking, there are two types of circuit editing. Major editing in-
volves the schematic capture of a large circuit section, and is primarily a data-entry
task. Incremental editing involves the small alteration of an existing system, often
in response to simulation results. Simulation during major editing is undesirable. A
system under construction does not have a meaningful state, and the heuristic algo-
rithm for evolving state may produce senseless results. When system construction
is finished, the system state may be random, forcing the user to reset Ana to begin
useful simulation. Simulation during incremental editing, however, is essential to
the Ana user interface.



Ana distinguishes incremental editing from major editing by examining the data
structure. Kirchoff’s current law states that the sum of all the current into a node
must be zero. Nodes associated with only one pin force the current through the pin
to be zero, which is normally an uncharacteristic behavior of a useful circuit. Ana
defines a system in which every node is connected to at least two nonmeasurement
pins as a complete system, on which major editing is not occurring. Ana simulates
only complete systems. This definition works well in practice, except for the oc-
casional finished system that is not “complete!” The addition of a small parasitic
capacitor to the offending node solves the problem.



Chapter 5
The Modeling Style of Ana

5.1 Introduction

As specified in Chapter 1, component models in an analog VLSI simulator must
be robust, efficient, and functional. To meet these performance requirements, gate
models in Ana follow a set of guidelines for robust simulation, and use a library of
functions suited for the efficient description of MOS systems. Chapter 6 details the
function library; the modeling style is the focus of this chapter.

The modeling guidelines address both the mathematical form and the behavioral
function of a gate description. Mathematically, the preferred method of partial
derivative evaluation for the Newton—Raphson method is given, and continuous
techniques are shown for describing discontinuous gate behavior. The functional
guidelines dictate parasitic elements in all gates, to prevent overconstrained systems
and physically impossible simulation results.

5.2 The Symbolic Evaluation of Partial Derivatives

As discussed previously, the behavior of a gate G, with pins 1,...,1,...,p is

defined as a set of functions Plk, . ,Plk, . ,P;, where
AV Node(1 AV Nod
]le = Plk (VNOde(l)a R VNode(p)7 C(l)te( ) 1 ;te(p) N

is the current out of Node(l) contributed by pin [. The functions can be redefined
with respect to the gate coordinate system, yielding the simpler expression

dVy dV,
Pk = pF ., =Lt
1 l (Vl, 7‘/:177 dta ) dt ) >

By applying the backward Euler method, these functions can be rewritten in finite-
difference form. For the solution at a specific time ¢, + At, the functions become
Pl’" = Plk (vi,...,vp), where v} = Vlt”At. To solve a set of nonlinear algebraic
equations that include these functions, the Newton—Raphson method requires the
evaluation of the set of partial derivatives

) )
vy’ Ovy,

as well as the function Plk

In the Ana library, the computation of partial derivatives is done by the numer-
ical evaluation of the symbolic derivatives of Plk, rather than by employing a finite



difference method. The symbolic method is more accurate than is that of finite
differences, resulting in quicker convergence and simulation stability. When com-
puting a function Plk with its full set of symbolic derivatives, redundant evaluation
can be eliminated through clever factoring, lessening the efficiency advantage of the
finite difference method.

5.3 Modeling Decisions with Fermi Functions

The function Plk should be continuous with respect to all variables v;, for several
reasons. A good initial guess of v9, . .., Ug is required for convergence of the Newton—
Raphson method; around a discontinuity, such a guess is impossible. In addition,
to use the symbolic method of partial-derivative evaluation, the first derivative of
Plk with respect to all pin potentials must be fully defined. Electrical components,
however, often exhibit sharp transitions. A set of switching functions with fully

defined derivatives is used in the Ana gate library to describe decisions.
The Fermi function has a fully defined first derivative and exhibits the desired
strong switching behavior. It is defined as
1

Fe (U) = 1 —I—exp(v/vf)’

for the domain of all real v. The range of the function is bounded by [0,1]. For
v/vy < 0, F, — 1, whereas for v/vy > 0, F, — 0. The switching slope at zero
is inversely proportional to 4v;. The switching point can be shifted to © by the
substitution v = v’ — 9, and the function RF, (v) has the expanded range [0, R].

Fermi functions can be easily used to make more complex decisions. The switch-
ing polarity can be reversed with the function F, (v) = 1 — F, (v). Given two de-
cisions Fe (v1) and F, (v2), the binary and decision is Fe (v1) Fe (v2). With the and
and not functions available, any Boolean logic expression can be synthesized. The
maximum and minimum functions can also be produced. The expressions

max (v, v2) = v1Fe (v2 — v1) + vo (v — v1)

and B
min(vy, v2) = voFe (v2 — v1) 4+ v1 Fe (V2 — v1)

display the technique.



5.4 Behavioral Modeling for a Robust Simulation

Several precautions must be taken in the modeling of components to ensure a
stable and sensible simulation. Inadequate modeling of parasitic capacitances can
remove a transient behavior that is necessary to achieve steady state simulation con-
ditions. The use of ideal voltage and current sources can result both in unsolvable,
overconstrained systems and in underconstrained systems that exhibit physically
impossible behaviors. The Ana gate library uses systematic techniques to avoid
these problems.

To ensure the proper transient behavior of a gate GGy, with pins 1,...,[,...,p,
there must be a capacitive path between each pin [ and the other p — 1 pins. In
addition, there must be a capacitive path between each pin and the reference node.
If the physical component does not exhibit parasitic behavior, the capacitance values
chosen should be small enough to have negligible effect on simulation accuracy.
This interconnection technique ensures that a gate with only one driven pin has a
transient path to steady-state operation.

Several parasitic elements are added to voltage and current sources in Ana to
prevent simulation difficulties. Linear resistors are added to independent voltage
sources to model output impedance. Fermi functions are used to limit independent
current sources; for a current source I, connected across a voltage v, the expression

i =I,F, (b —v)

limits the output current ¢ when the output voltage is below ©. When parasitic
elements cause a qualitative change in independent source behavior, graphical no-
tification of limiting appears on the schematic gate symbol. All MOS devices are
provided with output impedance; the functional form is shown in Chapter 6.



Chapter 6
The MOS Transistor

6.1 Introduction

The electrical characteristics of the MOS transistor are well known; Mead and
Mabher [4] have developed an accurate device model from first principles. The MOS-
FET model in Ana is an engineering approximation of a device physics model, which
efficiently captures the first-order behavior of the transistor. It is expressed as a
combination of simpler functions, which also are useful for manual circuit analysis.
These functions are used to describe more complex gates in the Ana library, as
shown in later chapters.

In Ana, the MOS transistor is modeled as a nonlinear, voltage-controlled current
source. The device has three terminals—named source, drain, and gate—with volt-
age potentials Vi, V4, and Vj, relative to the reference node. Differential voltages are
notated with multiple subscripts. The gate is an isolated control terminal, whereas
the source and drain are the current source terminals. The current I, is a function
of all three potentials. The analysis in this chapter assumes an N-channel device;
for a P-channel transistor, reverse the signs of all doubly subscripted variables in
the presentation.

The behavior of the device is symmetric with respect to Vy,. If Vg > 0, current
flows from drain to source, and |I45| = f(Vys, Vis). Conversely, for Vg, < 0, current
flows from source to drain, and |Iz5| = f(Vyq, Vas). Note that, if Vi, equals zero,
no current flows through the transistor. The behavioral symmetry of the MOS
transistor is reflected in the full mathematical symmetry of the Ana model; in the
following discussion, features are defined for forward current flow, then extended to
the reverse-direction flow.

6.2 A Simplified Nonlinear Current Source

As noted, when Vj; > 0, current flows from drain to source, and |Iz5| =
f(Vys, Vis). As a first approximation to Iys for forward current flow, a function
I.(Vys) can be defined. The function has two regions. For 0 < V,, < V;, where V; is
the threshold voltage of the transistor, I, is exponentially dependent on V. This
subthreshold region has the functional form

1, eXp(Vgs/VO)a

where I, and V,, are transistor parameters. For Vg5 > V;, I, has a square dependence
on Vys. This space-charge limited region continues throughout the normal operating
range of the device.



By applying current continuity at Vys = V;, and using Fermi functions, the
expression

I (Vgs) = Loexp (Vs /Vo) Fe (Vgs — Vi) + avgzs F, (Vgs — V2)

can be defined, where a = (I, exp(V;/V,))/V;2. Because of the symmetry of the de-
vice, I.(Vyq) is an approximation of the reverse current magnitude |I45| = f(Vya, Vis)
when Vi, < 0.

6.3 Output Impedance Extension

The MOS transistor has a finite output impedance. The Ana MOS model
approximates this behavior as a linear current dependence on V4 throughout the
model range, as proposed by Early. For forward current flow, the expression

If = Ic(‘/gs)G(Vds)

can be defined, where
Vds

G(Vys) = <1 + Ve)

and V., the Early voltage, is a transistor parameter. Likewise, in the reverse direc-
tion, where V;, < 0, the current magnitude can be expressed as

I = 1(Vga) G(Vsa)-

By using Fermi functions, the current magnitude can be approximated over the
entire range of Vy as

ItEIfFe(Vds)+IrFe(Vds)'

Note that the transition of I; around Vj, is not smooth. The next section of the
chapter addresses this issue.

6.4 Completing the Model

The behavior of an MOS transistor around V;s = 0 is dependent on the region
of operation. In the subthreshold region, full current is delivered for |V;| > V. For
|Vias| < Vo, current magnitude decreases, reaching zero at Vzg = 0. This behavior is
approximated by the expression

3V,
I;s = I; tanh < ds) .

o

The hyperbolic tangent argument ensures that I 3 ~ I; when Vy, > V. Also note
sgn(1gs) = sgn(Vys), correctly modeling bidirectional device behavior.



In the space-charge limited region, current derating begins at Vs = Vs — V4 in
the forward direction, and at Vg = Vg — V; in the reverse direction. Using Fermi
functions, the previous equation can be modified to approximate this behavior,

producing
3Vys
I, =Litanh | ———————
ds etan <VO+Vf+Vr>’
where o -
Vf = VQS Fe (Vgs _W)Fe(vds)
and

Vi =Vya Fe(Vya — Vi) Fe (Vas) -

This expression is the complete steady-state MOS transistor model in the Ana
library. In accordance with the modeling guidelines in Chapter 5, the linear capac-
itances Cyp, Cap, Copy, Cys, and Cyq also are included, where b is the reference node.
Key features of the model are graphed on the next four pages. These graphs are
simulation results from Ana.
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Chapter 7
The Transconductance Amplifier

7.1 Introduction

Most analog VLSI circuits can be simulated in Ana by using the MOS transistor
model developed in Chapter 6, in conjunction with resistor and capacitor gates.
Simulation is more efficient in several ways, however, if atomic models are created
for commonly used circuits. In an atomic model, the description of each transistor
can be simplified to reflect its role in the circuit. The model may be accurate for
only certain regions of operation, with range checking to indicate improper usage.
Nodes that are not accessible to the user can be eliminated, and replaced by a
closed-form approximation of subcircuit behavior.

The technique of circuit modeling is well illustrated by the transconductance
amplifier gate in Ana. The circuit schematic and gate symbol are shown on the next
page. The circuit has one active current output, I,,¢, which is a function of the four
user-accessible potentials Vq, Vo, Vier, and V,,¢, and of the two internal potentials
V and V,,. All six transistors typically operate in the subthreshold range. The
output current is a differential amplification of the potentials V; and Va, scaled by
a current controlled by V.

An atomic modeling strategy is easily applied to the transconductance amplifier.
The internal nodes corresponding to V' and V},, are eliminated in the Ana gate model.
Gate behavior is accurate only for values of Vi that ensure subthreshold operation
of all transistors; the user is informed of incorrect usage by a warning indicator
that appears on the symbol. The output impedance of all six circuit transistors
are lumped into a single term, and many other simplifications are made. These
techniques are described in detail in this chapter.

7.2 Basic Amplification Function

The amplification output function I,y (V7, Va2, Iset) can be easily derived, while
eliminating the nodes corresponding to the potentials V' and V,, from the gate
description. As noted on the schematic diagram, I,,; = I1 — I2 and I = 11 + Io.
Dividing I,y by Iser, and assuming ()2 and Q3 are in subthreshold, yields the
expression

Lo = L= 2y Vi V) —exp(lp = V)
out = Setjl 1+ I - Setexp(‘/l — V) + eXp(‘/Q - V)7

where all potentials are scaled by the inverse of V,. A factor of exp(—V') can be
eliminated from the fraction, resulting in the expression

exp(V1) — exp(V2)
exp(V1) + exp(V2)’

Iout = lget
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After algebraic manipulation, the simplified expression

Vi—V.
Iyt = Iger tanh (12‘/02) = Iamp

results, where all potentials are rescaled to correct units. As earlier stated, the
circuit functions as an amplifier of the difference V; — V5 over a domain of approxi-
mately 4V, volts. The range of the function is scaled by I, which is controlled by
Vset- In the following sections, several important additional characteristics of the
circuit are modeled, leading to the formulation of the complete function I,,;.

7.3 Computing the Scaling Current

In Section 7.2, the term I4; was not defined. If transistor ); always is fully on,
this definition is simply
Iset - Ic (‘/set) 5

where I. is taken from the MOS transistor model definition. However, the Vs of
(21 may not always be above V,, which is the necessary condition for the transistor
to be on. Recall that Ige; = I1 + I>. The dominant term in this sum is the current
corresponding to the voltage max(Vy, Va2). The voltage V' is therefore approximately
equal to max(Vy, Vo) — Vier. If max(Vy, Vo) —Vier < Vj, the current I.(Vie) is linearly
derated, as a result of the linear characteristic of the hyperbolic tangent function.

The expression
Tser = 1. (min (‘/seta max (VL ‘/2)))

is a good approximation of this behavior. The min and max functions are imple-
mented with Fermi functions, as shown in Chapter 5.

7.4 Computing the Output Impedance

The output transistors (5 and Q3 both have a finite output impedance, which
should be reflected in the amplifier model. Using the output impedance definition
G of the MOS transistor and Fermi functions, the expression

Lamp (Fe(Vi = V) G(Vour) + Fe(Vi = V3)G (Vaa — Vour))

supplies the necessary impedance.

When a transconductance amplifier is fabricated, the output current function is
not always an ideal hyperbolic tangent. One type of error introduced in manufac-
turing results in tanh(oo) # —tanh(—oo). Two simulation parameters A\, and A,
can be added to the previous expression to simulate this effect, resulting in the new
expression

Iamp (Fe(‘/l - %)G(Vout)An + Fe(‘/l - %)G(Vdd - V;mt)Ap) = Itot~



Note that A\, and A, both default to unity, for an ideal amplifier model.
7.5 Output Voltage Constraints

If V, is too large or too small, the circuit does not function as an amplifier. If
Vout 18 larger than V4, the current through transistor (05 changes direction, drawing
current from the output. Note that, if Vi > Vb, V, of Q5 is at a potential Vg — Vie,
and significant reverse current flows into Q5 for V,,; > Vyy. However, if Vi < Vs,
Vy of Q5 is at a potential Vg4, and noticeable reverse current flows from @5 only if
Viout > Viga + Vset The addition of the term

Ligp = — (Fe(Vl — Vo) Ie(Vour — Vaa) + Fe(Vi = Va)Ie(Vour + Veer — Vdd))

to Iymp models this effect.

If V,ut is too small, the differential transistor pair ()2 and Q3 ceases to operate
correctly. If Vo > Vi, V = V5 — Vi during normal operation. If Vi, < Vo — Ve, V
is forced to a lower potential to maintain the proper magnitude of current through
Q3. If Vo < Vi — Vier, however, Q2 and thus Q)5 conduct. A large output current
results, and the amplifier ceases to function as desired.

If Vo < Vi, similar breakdown results. In this case, V = Vj — V¢ during normal
operation. If Vj,; < Vi — Vi, V remains at V' = V| — Vi, and the current through
transistor ()3 changes direction. If V,,; < Vo — Vi, a significant reverse current
flows through ()3 to the output, and the circuit does not operate correctly. For both
Vo > Vi and Vo < Vi, the effect of low V,,; can be modeled by the addition of the
term

Ibot =1 (min (‘/17 V2) - ‘/out)

to Lamp-
7.6 Completing the Model

Using the previous definitions, the circuit is modeled completely by the expres-
sion
Iout - Itot + Itop + Ibot-

The model is accurate only when Vi.; < V;, ensuring subthreshold operation
of all transistors for normal V,,;. To meet the transient modeling requirements,
parasitic capacitances are added between each pair of nodes, and between each node
and ground. Graphs of key model features are shown at the end of the chapter.
These graphs are simulation results from Ana.

When the circuit is fabricated, the hyperbolic tangent amplifier characteristic
is not always centered about V; — Vo = 0. To allow simulation of this error, the
simulation parameter 9, is defined. In all the model equations previously presented,



Vi—Vi+ %5% and Vo — Vo — %51). The default value of ¢, is zero, providing an
ideal amplifier model.

7.7 The Wide-Range Transconductance Amplifier

In many system applications, the restrictive I,; behavior of the transconduc-
tance amplifier cannot be tolerated. In these applications, a variant of the circuit,
called the wide-range transconductance amplifier, is used. The circuit schematic and
gate symbol are shown on the next page. Except for a less restrictive I, function,
the circuit behaves in the same way as the standard transconductance amplifier.

Referring to the schematic, the behavior of transistor QJg for low V,,,; is symmet-
ric to the behavior of transistor Qg for high V,,;. Thus, the wide-range amplifier
function Ip,: can be deduced from the function I;,, to be

Tpot = = (Fe(Vi = Vo) Te(—Vour) + Fo(Vi = Vo) Ie(—Vour — Viet) )

In all other respects, the standard and wide-range transconductance amplifiers are
identically modeled in Ana.
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Chapter 8
Rectification Circuits

8.1 Introduction

The circuits described in Chapter 7 transform a differential voltage into a bidi-
rectional current, preserving the sign of the input signal. In applications such as
power estimation, demodulation, and absolute-value computation, a unidirectional
output signal is desired regardless of the input polarity. The half-wave rectifica-
tion operator achieves this result by ignoring input signals of one sign, whereas the
full-wave rectification operator produces a single polarity output by processing both
positive and negative inputs identically. MOS circuits that implement these func-
tions were designed by Massimo Sivilotti at Caltech, and are shown on the next
page.

The atomic models for both rectification circuits are described in this chapter.
Both circuits have one active output I,,;, which is a function of the voltages V7,
Vo, Viet, and Ve The descriptions of I,,; contain expressions originally defined
for the transconductance amplifier, illustrating the hierarchical nature of the Ana
modeling style.

8.2 Basic Rectification Function

The basic descriptions of both rectifiers are derived from the transconductance
amplifier function Iy, (Vi,V2) = Is tanh (Vé;/:@), shown in Chapter 7. For the
half-wave rectifier, note that I,,;- never can be a negative current. Thus, if V] > V5,
Vinir — Vg to ensure I,; = 0. As a result, I, = 0, and input signals of positive
polarity are rejected. When V5 > Vp, the current mirror formed by @1 and ()2
operates normally, and I,,; is the negation of the amplifier output current. In
this manner, only input signals of negative polarity are passed to the output. The

expression

I (Vi,Va) = —Iump (Vi, Vo) Fu(Vi — V)

amp

captures this behavior. From the schematic, the basic function of the full-wave
amplifier is Igmp (V1,Va) + 1 gmp (Va, V1), or, after simplification,

Ty (Vi V2) = Tummp (Vi Vo) (Fe(Vi = Va) = Fu(Vi = V2)) -

As desired, this expression is essentially the absolute value of the transconductance
amplifier basic function.

The output impedance of both circuits is simply the impedance of the active
output transistor, which can be expressed by the MOS transistor function G. The
two previous equations can be rewritten to include this impedance. It is convenient
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to include the transconductance amplifier fabrication parameters A\, and A, in this
restatement, resulting in the new definitions

11 = =2G(Vag — Vour) I (Vi, Va)

amp

and

ftfot = G(Vaa — Vout) Lamp (V1, V2) (AnFe(v1 —Va) = MFe (V1 — VQ)) _

8.3 QOutput Voltage Constraints

The current mirror formed by )1 and @5 prevents the transconductance ampli-
fier subfunctions I,; and I, from affecting rectification behavior, if Vi is set to
ensure subthreshold amplifier operation. Thus, in the half-wave rectifier, the only
component influenced by V,,; is transistor ()2, the current of which can reverse
direction if V,,; is sufficiently large. This transistor performs a similar function to
the output transistor (J5 in the transconductance amplifier. Following this previous
analysis, the expression

1y = = (Fe(Vi = Vo) Le(Vout + Viet — Vaa) + Fe(Vi = Vo) I(Vour — Vaa))

is obtained. This term is added to I, to model the half-wave rectifier completely.

From the schematic, the expression It{,p

for the full-wave rectifier is simply
It’ﬁ,p (V1,Va) + I[gp (Va, V7). For a functional model, this expression can be approxi-
mated as

Itfop = _Ic(%ut - Vdd + %et)-

This term is added to Itfot to model the full-wave rectifier completely.
8.4 Completing the Model

The steady-state models for the half-wave and full-wave rectifiers are complete.
These models are accurate for Vi; < Vi, ensuring subthreshold operation of all
transistors for normal V,,;. As in the transconductance amplifier, the simulation
parameter d, is defined to model fabrication variations, and in all previous equations
Vi—=WVi+ %51} and Vo — Vo — %61}. Parasitic capacitances are added between each
pair of nodes, and between each node and the reference node, to meet transient
modeling requirements. Graphs of the simulation results from Ana are shown on
the next page.
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Chapter 9
The Horizontal Resistor Circuit

9.1 Introduction

The polysilicon resistors available in a standard MOS fabrication process are not
suitable for widespread use in analog VLSI systems. High-value resistors consume
too much chip area, whereas low-value resistors dissipate an unacceptable amount of
power. The horizontal resistor circuit, shown on the next page, provides a nonlinear
variable resistance that can replace polysilicon resistors in many applications.

Referring to the schematic, the resistor terminals are the nodes associated with
potentials V;;, and V. The potentials Vi, and Vj;g, are complementary signals
that control the resistance value. In the Ana circuit model, the two active currents
I, and Iy are defined as a function of all four potentials. Vj,, and Vg, are
normally set to ensure that all transistors operate in the subthreshold region.

9.2 Basic Resistance Function

For the circuit to operate as intended, the control voltages V},,, and Vj;4, must
be set such that Ij;g, = ;o = Iser. Given this condition, by conservation of current,
L, = Iy = I. Transistors (Y3 and Qg carry an equal current I;, and transistors
@4 and Q5 carry an equal current I, as a result of circuit symmetry. By Kirchoft’s
current law, I = I, — I, and Is; = Is + I;. Dividing I by s, and assuming all
transistors operate in the subthreshold region, yields the expression

IL—1 exp(Vin — Vi) — exp(Vour — V)

I=Ig—F=1
set IZ + Il Setexp(‘/in - ‘/l) + eXp(Vout - ‘/l)’

where all potentials are scaled by the inverse of V,. By eliminating a factor of
exp(—V}) from the fraction, the previous equation can be rewritten as

eXp(Vtén) - eXp(‘/out)

I=1 .
st eXp(V;n) + eXp(‘/out)

After algebraic manipulation, the simplified expression

Vin — Vout

I = I tanh (M‘)

set 2%
is obtained, where all potentials are rescaled to correct units. Notice that the circuit
functions as a linear resistance over a range of approximately 4V, volts. The slope
of the linear region, and thus the resistance value, is determined by I, which
is controlled by the complementary potentials Vj,, and Vjg,. In the following
sections,



The Horizontal Resistor

Circuit Symbol
Vinon ——OI Q VhicH
L In kl"' Tour
Vin kA AAY >
Iy Vu Iz _\

I-O‘ Qs Qs lﬁ
Viv Ilg IO>UT Vour
I—‘ Qs Qs }—l

ILow

Viow 4—1 Q2

44

Viow

Vour



this expression is expanded to model circuit behavior if Ij;g, # 1oy, and if Vi, and
Vout are both too low or too high for correct operation of (1 or Q2.

9.3 Definition of Control Currents

In this section, complete expressions for the control currents Ij,, and Ip;gp,
are derived. First consider Ij,,. If transistor (2 is on and is operating in the
subthreshold region, I}, = I.(Viow). The potentials Vj;, and V,,:, however, also can
affect this current. Note that Ij,,, is primarily carried by the N-channel transistor
(Q4 or Qg) with the highest gate voltage. Thus, the potential V; has the value
max(Vin, Vout) — Viow- If this potential is less than Vj,, the current through transistor
()2 is derated. The expression

Ic(Wow)Fe (‘/low - maX(‘/m, %ut))

approximates this behavior.

The analysis of Ip;ep, is similar. If transistor ()1 is on and is operating in the
subthreshold region, I, = I.(Vyg — Vhigh)- This current also can be affected by
the potentials Vj;, and V. Note that Ip;g, is primarily carried by the P-channel
transistor (@3 or Q5) with the lowest gate voltage. Thus, the potential V}, has the
value min(Vi,, Vout) — (Vag — Vhign)- If this potential exceeds Vyq — V,, the current
through transistor () is derated. The expression

Ic(Vdd - Vhigh)Fe (min(Vm, Vout) - (Vdd - Vhigh))

approximates this behavior.

As in the transconductance amplifier, when the horizontal resistor circuit is
fabricated, the nonlinear resistance function can display the error tanh(oo) #
— tanh(—o00). The parameters )\, and A, can be added to the previous equations to
model this behavior, resulting in the final expressions

Ilow = /\nIc(‘/low)Fe (Wow - HlaX(Vm, V;)ut))
and
Ihigh = )\pIC(Vdd - th‘gh)Fe (min(Vm, Vout) = (Vaa — Vhigh))-

If Vijw > Vi or Vgg — Viign > Vi, the circuit is not in the subthreshold region
of operation, and the model is not longer accurate. If either condition occurs, a
warning indicator appears on the schematic symbol.



9.4 Completing the Model

The results of Sections 9.2 and 9.3 can be combined with Fermi functions to
describe the currents I;, and I,,:. If I,..s = tanh (V“L{ivl/‘m> , the definitions

]z'n = (Fe(‘/m - V;)ut)]low + Fe(‘/in - V;)ut)]high) Ires

and
Iout = (Fe(‘/; - ‘/out)Ihigh + Fe(%n - Vout)Ilow) Ires

are exact for In;gn = Ijgw. If Inign # Iiow, the expressions are a suitable approxima-
tion for a functional model.

To complete the steady-state model, the appropriate output impedance is added
to each expression using the MOS transistor function GG, producing the final defini-
tions

Tin = (Fe(Vin = Vout)G(Vin) liow + Fe(Vin = Vout)G(Vaa = Vin) Inigh) Tres
and
Iout = (E(‘fz - Vout)G(Vdd - ‘/out)Ihigh + Fe(‘/in - Vout)G(Vout)[low> Ires-

As in previous circuit models, the simulation parameter ¢, is defined to model
fabrication variations, and distributed between the potentials V;,, and V,,;. Parasitic
capacitances are added between each pair of nodes, and between each node and the
reference node, to meet transient model requirements. Simulation results from Ana
are shown on the next page.
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Chapter 10
The Ganglion Circuit

10.1 Introduction

In biological systems, information often is encoded as the average value of a pulse
train of standard height. The ganglion circuit, shown on the next page, imitates this
neuronal behavior, generating a pulse stream V,,;(¢) that has an average potential
proportional to the input current I;,. The pulses switch between Vj;; and the
reference node, with a time constant set by the control voltage Vi.,z. The Ana
model defines the active currents I;;, and I,,; as functions of the potentials V;,, Vour
and Vieak-

10.2 Principles of Circuit Operation

Referring to the schematic, the transistors @3, @4, )5, and Qg function as a
pair of inverters. These transistors can be functionally modeled as a noninverting
buffer between V;,, and V,,;, which sets V,,; = Vyq if Vi, is greater than the buffer
threshold Vy,, and sets Vs equal to the reference voltage if V;, < V.

It is convenient to analyze qualitative circuit behavior from the initial condition
Vin = Vi — AVy. This condition implies V,,; is at the reference voltage, and
transistor ()2 is off. The capacitor C] charges at a rate determined by I;, until
Vin = Vip,. At this instant the buffer switches, forcing the new conditions Vs = Vg
and V;, = Vi, + AVh. As a result, transistor (o is on, and C; discharges at a rate
determined by the current I, — Iin, until Vj,, = V. At this point, the buffer
again switches, returning V,,; to the reference voltage and setting V;, = Vi, — AVj.

The quantities AV; and AV can be determined easily, using conservation of
charge in the system during buffer switching. The instant before the buffer switches
to Vour = Vg, capacitors Cq and Cy are connected in parallel between V;, and the
reference node, and the total charge in the system is Q_ = (C} + C2)Vyy,. After the
buffer switches, C'1 and Cs form a capacitive divider between V;; and the reference
node, and the total charge in the system is Q4+ = C1 (Vi +AVa)—Co(Vgg— Vi —AVa).
Equating @)+ and @)_ yields, after algebraic manipulation, the expression

Co

AV; = (
2 C1+ Cs

) Vaa.

The same technique can be used to determine AV;. The instant before the buffer
output switches from Vj; to the reference voltage, the capacitive voltage divider
topology is in place, and the total charge in the system is Q1 = C1 Vi —Co(Vyg—Vin).
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After the buffer switches, C; and Cs form the parallel topology, and Q_ = (C] +
C2)(Vip, — AVy). Equating total charge and solving for AV; shows that

Co
AV, = ()v YN
1 Cl+02 dd 2

as symmetry would suggest.

The pulse duration period, 74, when V,,,+ = V4, and the pulse refractory period,
T, when V,; equals the reference voltage, can both be determined easily. Applying
the capacitor definition for C'; when V,,; is high gives the expression

dVin —AV;

Icap = Cl dt = Cl 4 = Iin - Ileak-

Solving for the pulse duration yields

- :< C1Cy ) Via
I Cr+Co) \Tjeak, — Iin )

This technique also can be applied when V,,; is low. The capacitor definition for

1 is

dVin AV;
= = I .
dt = Tr m

Algebraic manipulation yields the final expression

. :( C1Cs )(Vdd>
" Ci1+Co) \Iin /)~
As expected, as I;;, — 0, 7 — 00, and the average value of V,,; is the reference
voltage. Also, as I;, — oo, 74 — 0 and 7 — 0, and the average value of V,,; is V.

Icap = Cl

10.3 The Ana Model

The Ana ganglion model is not an abstraction of the switching dynamics of
the circuit. Rather, the state capacitors C'; and C remain in the model. Efficient
descriptions are substituted for the noninverting buffer Q)s... Qg and the leakage
circuit @1 and Q2.

The noninverting buffer can be modeled as a nonlinear, voltage-controlled volt-
age source with an output resistance R;. This source can be described using a Fermi
function, as

Isw - Rls(vddFe (Vth - Vm) - Vout)-

Iyt is the sum of I, and the current contributed by Co.



If Vi, < Vi, the current Ijeqp is set by Q1 to be I.(Viear). If Vi, > Vip,, however,
the noninverting buffer output is high, @5 is off, and I,z = 0. The expression

Ileak = G(Vin)Ic(‘/leak)Fe (Vth - Vm)

approximates this behavior, including the transistor output impedance. The current
I, is the sum of Ij.,; and the current contributed by C and Cs.

With the addition of a parasitic capacitor between each pair of nodes, and
between each node and the reference node, the ganglion model is complete. The
model is correct only if ()1 and )2 are operating in the subthreshold region; if Vjeq. >
Vi, a warning indicator appears on the gate symbol. Graphs of Ana simulation
results appear on the following pages.
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Chapter 11
Topics for Further Research

The evolution of Ana from the prototype described in this thesis to a production
tool is in many ways a straightforward process. Algorithm refinement and code
optimization can improve program efficiency, and the user interface can be enhanced
by fully integrating Ana into the LOG environment. An expansion of the gate
library, however, presents several difficulties.

Creating the complete software definition of an Ana gate is a large task; the
horizontal resistor gate, for example, is defined by approximately 1200 lines of Pascal
source code, which required 50 hours of programmer time to generate. Recall that
for a gate G* with p pins, the Newton Raphson method requires, for each pin I,
the evaluation of the set of partial derivatives

oPf oPf
ov1 7 Oy

in addition to the behavioral function Plk The generation and efficient coding of
these symbolic derivatives are tedious and time-consuming manual tasks.

A LOG tool that transforms a set of functional descriptions Pf .. .P‘f into an
efficient software definition is clearly needed. Standard techniques in compiler de-
sign and symbolic mathematical manipulation are applicable to the design of a
simulation assembler. This tool simplifies the conversion of a functional description
into a software definition; the generation of the functions Pk1 ... Pl from a circuit
schematic remains a manual operation.

A simulation compileris a tool that generates a closed-form behavioral model of
an analog circuit. Using this tool, a hierarchical model of a large analog system can
be created easily. Circuit theory provides a compilation algorithm that generates
exact descriptions of linear circuits. Unfortunately, there is no known method for
generating an exact, closed-form description of an arbitrary nonlinear circuit.

Circuits designed in the analog VLSI style developed at Caltech, however, have
several interesting semantic properties. Usually, the MOS transistor and the MOS
capacitor are the only circuit primitives. Typically, transistors are used either in
the subthreshold region or as components in simple logic gates. The MOS capacitor
can be considered as a linear element without changing its qualitative behavior in
most circuits.

In addition, an exact, completely closed-form description of a nonlinear circuit
is not necessary in this application. Approximate descriptions, similar to the circuit
models presented in this thesis, are sufficient for functional simulation. Eliminating
most of the intermediate variables in a circuit model is an acceptable alternative to
generating a closed-form expression.



Under these weakened source and object constraints, simulation compilation
is a tractable research topic. This research may be related to fields as diverse as
linear and nonlinear systems theory, deterministic and stochastic estimation the-
ory, electronic circuit design, symbolic mathematical manipulation algorithms, and
production-rule programming.
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